Synthesis of Hydroxyapatite Containing some Trace Amounts Elements in Simulated Body Fluids

Document Type: Research Article


College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P.R. CHINA


Spherical-like hydroxyapatite (HA, Ca10(PO4)6(OH)2) particles were prepared by the co-precipitation method in a simulated physiological environment. The effect of calcining temperature, calcining time and the Ca/P ratio of the initial feeding on the morphology and crystallinity of HA were investigated in detail. Interestingly, while the Ca/P ratio of the initial feeding is 1.80, the obtained HA powders calcined at 800 °C for 2 h contain trace amounts of Na and Mg ions, and the (Ca+Na+Mg)/P ratio is equal to 1.66, which is close to the stoichiometric ratio 1.67 of HA. And a better route with shorter reaction time for the synthesis of HA containing trace amounts of Na and Mg elements was acquired.


Main Subjects

[1] Mossaad C., Tan M.C., Starr M., Andrew Payzant E., Howe J.Y., Riman R.E., Size-dependent Crystalline to Amorphous Uphill Phase Transformation of Hydroxyapatite Nanoparticles, Cryst. Growth Des., 11:45-52 (2011).

[2] Abdal-hay A., Vanegas P., Hamdy A.S., Engel F.B., Lim J.H., Preparation and Characterization of Vertically Arrayed Hydroxyapatite Nanoplates on Electrospun Nanofibers for Bone Tissue Engineering, Chem. Eng. J., 254: 612-622 (2014).

[3] Sygnatowicz M., Tiwari A., Controlled Synthesis of Hydroxyaoatite-based Coating for Biomedical Application, Mater. Sci. Eng., C, 29: 1071-1076 (2009).

[5] Yu J.H., Chu X.B., Cai Y.R., Tong P.J., Yao J.M., Preparation and Characterization of Antimicrobial Nano-hydroxyapatite Composites, Mater. Sci. Eng., C, 37: 54-59 (2014).

[6] Inthong S., Tunkasiri T., Eitssayeam S., Pengpat K., Rujijianngul G., Physical Properties and Bioactivity of Nanocrystalline Hydroxyapatite Synthesized by a Co-precipitation Route, Ceram. Int., 39: 533-536 (2013).

[7] Wang P.P., Li C.H., Gong H.Y., Jiang X.R., Wang H.Q., Li K.X., Effects of Synthesis Conditions
on the Morphology of Hydroxyapatite Nanoparticles Produced by Wet Chemical Process
, Powder Technol., 203: 315-321 (2010).

[8] Chen J.D., Wang Y.J., Chen X.F., Ren L., Lai C., He W., Zhang Q.Q., A Simple Sol-gel Technique for Synthesis of Nanostructured Hydroxyapatite, Tricalcium Phosphate and Biphasic Powders, Mater. Lett., 65: 1923-1926 (2011).

[9] Sanosh K.P., Chu M.C., Balakrishnan A., Kim T.N., Cho S.J., Preparation and Characterization of Nano-hydroxyapatite Powder Using Sol-gol Technique, Bull. Mater. Sci., 32: 465-470 (2009).

[10] Pramanik S., Agarwal A.K., Rai K.N., Garg A., Development of High Strength Hydroxyapatite
by Solid-state-sintering Process
, Ceram. Int., 33: 419-426 (2007).

[11] Suchanek W., Yoshimura M., Processing and Properties Hydroxyapatite-based Biomaterials for Use as Hard Tissue Replacement Implants, J. Mater. Res., 13: 94-117 (1997).

[12] Sasikumar S., Vijayaraghavan R., Synthesis and Characterization of Bioceramic Calcium Phosphates by Rapid Combustion Synthesis, J. Mater. Sci. Technol., 26: 1114-1118 (2010).

[13] Manafi S., Rahimipour M.R., Synthesis of Nanocrystalline Hydroxyapatite Nanorods via Hydrothermal Conditions, Chem. Eng. Technol., 34: 972-976 (2011).

[14] Chen B.H., Chen K.I., Ho M.L., Chen H.N., Chen W.C., Wang C.K., Synthesis of Calcium Phosphates
and Porous Hydroxyapatite Beads Prepared by Emulsion Method
, Mater. Chem. Phys., 113: 365-371 (2009).

[15] Poinern G.E.J., Ghosh M.K., Ng Y.J., Lssa T.B., An S., Singh P., Defluoridation Behavior of Nanostructured Hydroxyapatite Synthesized through an Ultrasonic and Microwave Combined Technique, J. Hazard. Mater., 185: 29-37 (2011).

[16] Kalia P., Vizcay-Barrena G., Fan J.P., Warley A., Di Silvio L., Huang J., Nanohydroxyapatite Shape and Its Potential Role in Bone Formation: an Analytical Study, J. Royal Soc. Interface, 11: 20140004 (2014).

[17] Niakan A., Ramesh S., Ganesan P., Tan C.Y., Purbolaksono J., Chandran H., Ramesh S., Teng W.D., Sintering Behaviour of Natural Porous Hydroxyapatite Derived from Bovine Bone, Ceram. Int., 41:3024-3029 (2015).

[18] Poinern G.E.J., Brundavanam R.K., Thi Le X., Nicholls P.K., Cake M.A., Fawcett D., The Synthesis, Characterisation and in vivo Study of a Bioceramic for Potential Tissue Regeneration Applications, Sci. Rep., 4:6235 (2014).

[19] Wang Y.J., “Biomedical Ceramic Materials”, South China University of Technology Press, Guangzhou (2010).

[20] Lee D.Y., Park J.H., Oh K.T., Lee Y.K., Kim K.M., Kim K.N., Bioactivity of Calcium Phosphate Coatings Prepared by Electrodeposition in a Modified Simulated Body Fluid, Mater. Lett., 60: 2573-2577 (2006).

[21] Li P.J., Nakanishi K., Kokubo T., de Groot K., Induction and Morphology of Hydroxyapatite, Precipitated from Metastable Simulated Body Fluids on Sol-gel Prepared Silica, Biomaterials, 14: 963-968 (1993).

[22] Cüneyt Tas A., Synthesis of Biomimetic Ca-hydroxyapatite Powders at 37℃ in Synthetic Body Fluids, Biomaterials, 21: 1429-1438 (2000).

[23] Greish Y.E., Brown P.W., Phase Evolution during the Formation of Stoichiometric Hydroxyapatite
at 37.4°C
, J. Biomed. Mater. Res., Part B: Appl. Biomater., 67: 632-637 (2003).

[24] Li M.S., Lu Y.P., Ge S.S., Synthesis of Nanocrystalline Hydroxyapatite Powders in Simulated Body Fluid, J. Mater. Sci., 40: 2073-2076 (2005).

[25] Eraković S., Janković A., Veljović D.j., Palcevskis E., Mitrić M., Stevanović T., Janaćković D.j., Mišković-Stanković V., The Corrosion Stability and Bioactivity in Simulated Body Fluid of Silver/hydroxyapatite and Silver/hydroxyapatite/lignin Coatings on Titanium Obtained by Electrophoretic Deposition, J. Phys. Chem. B, 117(6):1633-1643 (2013).

[26] Bianco A., Cacciotti I., Lombardi M., Montanaro L., Bemporad E., Sebastiani M., F-substituted Hydroxyapatite Nanopowders: Thermal Stability, Sintering Behaviour and Mechanical Properties, Ceram. Int., 36:313-322 (2010).

[27] Li G.D., “Fundamental Study on a Novel Technology of CaC2 Production from Fine Coke and Fine CaO”, Beijing University of Chemical Technology (2011).

[28] Kaygili O., Dorozhkin S.V., Keser S., Synthesis and Characterization of Ce-substituted Hydroxyapatite by Sol-gel Method, Mater. Sci. Eng., C, 42: 78-82 (2014).

[29] Kulanthaivel S., Roy B., Agarwal T., Giri S., Pramanik K., Pal K., Ray S.S., Maiti T.K., Banerjee I., Cobalt Doped Proangiogenic Hydroxyapatite for Bone Tissue Engineering Application, Mater. Sci. Eng., C, 58: 648-658 (2016).

[30] Janković A., Eraković S., Mitrić M., Matić I.Z., Juranić Z.D., Tsui G.C.P., Tang C.Y., Mišković-Stanković V., Rhee K.Y, Park S.J., Bioactive Hydroxyapatite/graphene Composite Coating and Its Corrosion Stability in Simulated Body Fluid, J. Alloys Compd., 624: 148-157 (2015).

[31] Guo X.J., Yan H.D., Zhao S.G., Zhang L., Li Y.T., Liang X.H., Effect of Calcining Temperature
on Particle Size of Hydroxyapatite Synthesized by Solid-state Reaction at Room Temperature
Adv. Powder Technol., 24: 1034-1038 (2013).

[32] Hench L.L., Wilson J., “An Introduction to Bioceramics”, World Scientific, London (1993).