Novel Schiff Bases of Pyrrole: Synthesis, Experimental and Theoretical Characterizations, Fluorescent Properties and Molecular Docking

Document Type : Research Article

Authors

1 Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, I.R. IRAN

2 Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran, I.R. IRAN

Abstract

Some new Schiff-base compounds based on pyrrole were synthesized by the reaction of 2-amino-1-methyl-4,5-diphenyl-1H-pyrrole-3-carbonitrile (1)with aromatic aldehydes (2a-2e) in ethanol/acetic acid at room temperature. The structures of the Schiff bases were characterized by full spectral data. The fluorescence emission intensity of the Schiff bases has been measured in different polar solvents (protic and aprotic) at different temperatures and also pHs. Among the products of this reaction, 2-[(2-hydroxy-benzylidene)-amino]-1-methyl-4,5-diphenyl-1H-3-carbonitrile(3a) exhibited good results. The molecular docking studies on all Schiff bases revealed that the compound 3a forms a stable complex with polo-like kinase1 as a target and gives a binding affinity value of -8.9 kcal/mol. According to the obtained results, the DFT calculations carried out on 3a by using B3LYP/6-31+G(d,p) level of theory which the theoretical data were in good agreement with the experimental data. Furthermore, the NBO analysis showed the electron transfers correctly.

Keywords

Main Subjects


[1] Souzangarzadeh S., 1,3-Dipolar Cycloaddition Reaction of Nitrile Oxides to Isatin Imines, Iran. J. Chem. Chem. Eng (IJCCE)., 35, 31-35 (2016).
[2] Golchoubian H., Nazari O., Soleimani G., Mohseni M., Template Synthesis, Structural Characterization and Antibacterial Activity of an Unsymmetrical Tridentate Schiff Base Nickel(II) Complex, Iran. J. Chem. Chem. Eng (IJCCE)., 33, 65-72 (2014).
[3] Salehi M., Ghasemi F., Kubicki M., Asadi A., Behzad M., Ghasemi M.H., Gholizadeh A., Synthesis, Characterization, Structural Study and Antibacterial Activity of the Schiff Bases Derived from Sulfanilamides and Related Copper(II) Complexes, Inorg. Chim. Acta., 453: 238-246 (2016).
[4] Parekh N.M., Mistry B.M., Pandurangan M., Shinde S.K., Patel R.V., Investigation of Anticancer Potencies of Newly Generated Schiff Base Imidazolylphenylheterocyclic-2-Ylmethylenethiazole-2-amines, Chin. Chem. Lett., 28: 602-606 (2017).
[5] Köse M., Ceyhan G., Tümer M., Demirtaş İ., Gönül İ., McKee V., Monodentate Schiff Base Ligands: Their Structural Characterization, Photoluminescence, Anticancer, Electrochemical and Sensor Properties, Spectrochim. Acta, Part A., 137: 477-485 (2015).
[6] Mondal S., Mandal S.M., Mondal T.K., Sinha C., Spectroscopic Characterization, Antimicrobial Activity, DFT Computation and Docking Studies of Sulfonamide Schiff Bases, J. Mol. Struct., 1127: 557-567 (2017).
[7] Afzal S., Akhter Z., Gul A., Nadeem M.A., Tahir M.N., Perveen F., Crystal Structure Analysis, Biological Evaluation by Docking and DFT Studies of a Novel Schiff Base, J. Chem. Soc. Pak., 38: (2016).
[8] Asgharpour Z., Farzaneh F., Abbasi A., Ghiasi M., Synthesis, Crystal Structure and DFT Studies of a New Dioxomolybdenum(VI) Schiff Base Complex as an Olefin Epoxidation Catalyst, Polyhedron, 101: 282-289 (2015).
[11] Lakshme S.S., Geetha K., Gayathri M., Shanmugam G., Synthesis, Crystal Structures, Spectroscopic Characterization and in Vitro Antidiabetic Studies of New Schiff Base Copper(II) Complexes, J. Chem. Sci., 128: 1095-1102 (2016).
[12] Chakraborty J., Singh R.K.B., Samanta B., Choudhury C.R., Dey S.K., Talukder P., Borah M.J., Mitra S., Two New Quadridentate Schiff Base Complexes of Nickel (II) and Cobalt (III): Synthesis, Structure and Spectral Characterisation, Z. Naturforsch., B: Chem. Sci., 61: 1209-1216 (2006).
[13] Abdel-Rahman L.H., El-Khatib R.M., Nassr L.A., Abu-Dief A.M., Synthesis, Physicochemical Studies, Embryos Toxicity and DNA Interaction of Some New Iron (II) Schiff Base Amino Acid Complexes, J. Mol. Struct., 1040: 9-18 (2013).
[14] Kumar S., Dhar D.N., Saxena P., Applications of Metal Complexes of Schiff Bases—A Review, J. Sci. Ind. Res., 68: 181-187 (2009).
[15] Snell E.E., Di Mari S.J., 7 Schiff Base Intermediates in Enzyme Catalysis, The Enzymes, 2: 335-370 (1970).
[16] Nejati K., Rezvani Z., Massoumi B., Syntheses and Investigation of Thermal Properties of Copper Complexes with Azo-containing Schiff-Base Dyes, Dyes Pigments., 75: 653-657 (2007).
[17] Hart C., Schulenberg B., Steinberg T.H., Leung W.Y., Patton W.F., Detection of Glycoproteins in Polyacrylamide Gels and on Electroblots Using Pro‐Q Emerald 488 Dye, a Fluorescent Periodate Schiff‐Base Stain, Electrophoresis, 24: 588-598 (2003).
[18] Wang L., Qin W., Liu W., A Sensitive Schiff-base Fluorescent Indicator for the Detection of Zn 2+, Inorg. Chem. Commun., 13: 1122-1125 (2010).
[20] Khashi M., Davoodnia A., Lingam V.P.R., DMAP Catalyzed Synthesis of Some New Pyrrolo [3, 2-e] [1, 2, 4] triazolo [1, 5-c] pyrimidines, Res. Chem. Intermed., 41:5731-5742 (2015).
[21] O'Malley D.P., Li K., Maue M., Zografos A.L., Baran P.S., Total Synthesis of Dimeric Pyrrole-Imidazole Alkaloids: Sceptrin, Ageliferin, Nagelamide E, Oxysceptrin, Nakamuric Acid, and the Axinellamine Carbon Skeleton, J. Am. Chem. Soc., 129, 4762-4775 (2007).
[23] Williams B.M., Barone V., Pate B.D., Peralta J.E., Gradient Copolymers of Thiophene and Pyrrole for Photovoltaics, Comput. Mat. Sci., 96, Part A, 69-71 (2015).
[24] Choi J.H., Ryu J.Y., Park Y.J., Begum H., Park H.-R., Cho H.J., Kim Y., Lee J., Fluorescent Chemosensor Based on Pyrrole-Aminoindanol for Selective Zinc Detection, Inorg. Chem. Commun., 50, 24-27 (2014).
[25] Velmathi S., Reena V., Suganya S., Anandan S., Pyrrole Based Schiff Bases as Colorimetric and Fluorescent Chemosensors for Fluoride and Hydroxide Anions, J. fluoresc., 22, 155-162 (2012).
[27] Chen M.Y., Hsu M.A., Liu C.Y., Chow T.J., Synthesis and Electroluminescence of Metal 4‐Styryl‐8‐hydroxyquinolates, J. Chin. Chem. Soc., 51, 735-742 (2004).
[28] Lim T.L., Nazarov M., Yoon T.L., Low L.C., Ahmad Fauzi M.N., X-ray diffraction experiments, luminescence measurements and first-principles GGA + U calculations on YTaO4, Comput. Mat. Sci., 77, 13-18 (2013).
[29] Yin J., Lu X., Dong Q., First Principles Study the Luminescence Mechanism of Wurtzite AgInS2 Doped by Zinc, Comput. Mat. Sci., 122: 86-91 (2016).
[30] Kim K.B., Kim H., Song E.J., Kim S., Noh I., Kim C., A Cap-type Schiff Base Acting as a Fluorescence Sensor for Zinc (II) and a Colorimetric Sensor for Iron (II), Copper (II), and Zinc (II) in Aqueous Media, Dalton Transactions, 42: 16569-16577 (2013).
[31] Lee S.A., You G.R., Choi Y.W., Jo H.Y., Kim A.R., Noh I., Kim S.-J., Kim Y., Kim C., A New Multifunctional Schiff Base as a Fluorescence Sensor for Al3+ and a Colorimetric Sensor for CN- in Aqueous Media: an Application to Bioimaging, Dalton Trans., 43: 6650-6659 (2014).
[32] Yang L., Zhu W., Fang M., Zhang Q., Li C., A new Carbazole-Based Schiff-Base as Fluorescent Chemosensor for Selective Detection of Fe 3+ and Cu2+, Spectrochim. Acta, Part A., 109: 186-192 (2013).
[34]  Mohajeri S., Noei M., Molaei N., Cyanogen, Methylacetylene, Hydroquinone, Ethylacetylene, Aniline, Pyrrole, and Ethanol detection by using BNNT: DFT Studies, Iran. J. Chem. Chem. Eng. (IJCCE)., (2017) in press.
[35]  Bandyopadhyay D., Layek M., Fleck M., Saha R., Rizzoli C., Synthesis, Crystal Structure and Antibacterial Activity of Azido Complexes of Cobalt(III) Containing Heteroaromatic Schiff Bases, Inorg. Chim. Acta., 461: 174-182 (2017).
[36] Ghorab M.M., Ragab F.A., Heiba H.I., Youssef H.A., El-Gazzar M.G., Synthesis of Novel Pyrazole and Pyrimidine Derivatives Bearing Sulfonamide Moiety as Antitumor and Radiosensitizing Agents, Med. Chem. Res., 21: 1376-1383 (2012).
[37] Tomašič T., Mirt M., Barančoková M., Ilaš J., Zidar N., Tammela P., Kikelj D., Design, Synthesis and Biological Evaluation of 4,5-dibromo-N-(thiazol-2-yl)-1H-pyrrole-2-carboxamide Derivatives as Novel DNA Gyrase Inhibitors, Biorg. Med. Chem., 25: 338-349 (2017).
[38] Downward J., Finding the Weakness in Cancer, N. Engl. J. Med., 361, 922-924 (2009).
[39]  Luo J., Emanuele M.J., Li D., Creighton C.J., Schlabach M.R., Westbrook T.F., Wong K.-K., Elledge S.J., A Genome-Wide RNAi Screen Identifies Multiple Synthetic Lethal Interactions with the Ras Oncogene, Cell, 137: 835-848 (2009).
[40] Valeur B., Berberan-Santos M.N., “Molecular Fluorescence: Principles and Applications”, John Wiley & Sons, Inc., (2012).
[41] Skoog D.A., West D.M., “Principles of Instrumental Analysis”, Saunders College Philadelphia, (1980).
[42] Lakowicz J.R., “Principles of Fluorescence Spectroscopy”, Springer Science & Business Media, (2013).
[43] White A., Effect of pH on Fluorescence of Tyrosine, Tryptophan and Related Compounds, Biochem. J., 71: 217-    (1959).
[45] Frisch M., Trucks G., Schlegel H., Scuseria G., Robb M., Cheeseman J., Montgomery Jr J., Vreven T., Kudin K., Burant J., Gaussian 03, Revision B. 05; Gaussian, Inc., Pittsburgh, PA, 12478 (2003).
[48] Beyramabadi S., Morsali A., Shams A., N, N′-Dipyridoxyl (1, 2-diaminocyclohexane) and Its Cu (II) Complex: Synthesis, Experimental and Theoretical Studies, J. Struct. Chem., 56: 243-249 (2015).
[50] Habibi M., Beyramabadi S.A., Allameh S., Khashi M., Morsali A., Pordel M., Khorsandi-Chenarboo M., Synthesis, Experimental and Theoretical Characterizations of a new Schiff Base Derived from 2-Pyridincarboxaldehyde and Its Ni (II) Complex, J. Mol. Struct., 1143: 424-430 (2017).
[51] Toozandejani T., Beyramabadi S.A., Chegini H., Khashi M., Morsali A., Pordel M., Synthesis, Experimental and Theoretical Characterization of a Mn (II) Complex of N, N′-dipyridoxyl (1, 2-diaminobenzene), J. Mol. Struct., 1127: 15-22 (2017).
[53] Schwenke D.W., Truhlar D.G., Systematic Study of Basis Set Superposition Errors in the Calculated Interaction Energy of Two HF Molecules, J. Chem. Phys., 82: 2418-2426 (1985).
[55] Snehalatha M., Ravikumar C., Joe I.H., Sekar N., Jayakumar V., Spectroscopic Analysis and DFT Calculations of a Food Additive Carmoisine, Spectrochim. Acta, Part A, 72: 654-662 (2009).
[56] Sadeghzade Z., Beyramabadi S.A., Morsali A., A DFT Investigation of Structure, Spectroscopic Properties and Tautomerism of the Anticonvulsant Drug Lyrica, Spectrochim. Acta, Part A, 138: 637-642 (2015).