Two and Three-Body Interactions between CO, H2O, and HClO4

Document Type: Research Article

Authors

Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, I.R. IRAN

Abstract

Intermolecular interactions of different configurations in the HOClO3···CO and HOClO3···H2O dyad and CO···HOClO3···H2O triad systems have been studied at MP2/6-311++G(2d,2p) computational level. Molecular geometries, binding energies, cooperative energies, many-body interaction energies, and Energy Decomposition Analysis (EDA) were evaluated. The results reveal that the stability of cyclic triads is more than linear ones and in the order IV > III > II > I configurations. All of the triads have diminutive energy. Red shifts of H-O stretching frequency for complexes involving HClO4 as HB-donor are predicted. The electronic properties of the complexes are analysed using parameters derived from the Quantum Theory of Atoms in Molecules (QTAIM) methodology.

Keywords

Main Subjects


[1] Desiraju G., Steiner T, “The Weak Hydrogen Bond: In Structural Chemistry and Biology”, Oxford University Press, Oxford (1999).

[2] Jeffrey G.A., “An Introduction to Hydrogen Bonding”, Oxford University Press, New York (1997).

[3] Scheiner S., “Molecular Interactions: From van der Waals to Strongly Bound Complexes”, John Wiley & Sons, Inc., Chichester, UK (1997).

[4] Gilli G., Gilli P., “The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory”, Oxford University Press, New York (2009).

[5] Grabowski S. J., “Hydrogen Bonding: New Insights, Springer, The Netherlands (2006).

[6] Blanco F., Alkorta I., Solimannejad M., Elguero J., Theoretical Study of the 1:1 Complexes between Carbon Monoxide and Hypohalous Acids, The Journal of Physical Chemistry A (J. Phys. Chem. A.), 113 (13): 3237–3244 (2009).

[7] Rozas I., On the Nature of Hydrogen Bonds: An Overview on Computational Studies and a Word About Patterns, Physical Chemistry Chemical Physics (Phys. Chem. Chem. Phys.), 9(22): 2782-2790 (2007). 

[8] Albernaz A. F., Aquilanti V, R. P. Barreto P., Caglioti C., Claudia P. S. Cruz A., Grossi G., Lombardi A., Palazzetti F., Interactions of Hydrogen Molecules with Halogen-Containing Diatomics from Ab Initio Calculations: Spherical-Harmonics Representation and Characterization of the Intermolecular Potentials The Journal of Physical Chemistry A (J. Phys. Chem. A.), 120(27): 5315–5324 (2016).

[9] Li Q., Lin Q., Li W., Cheng J., Gong B., Sun J. , Cooperativity between the Halogen Bond and the Hydrogen Bond in H3N⋅⋅⋅XY⋅⋅⋅HF Complexes (X, Y=F, Cl, Br), (ChemPhysChem), 9(15):2265–2269 (2008).

[11] Hobza P., Havlas Z., Blue-Shifting Hydrogen Bonds, Chemical Reviews(Chem. Rev.), 100 (11): 4253-4264 (2000).

[12] Jabłoński M., Palusiak M., Nature of a Hydride–Halogen Bond. A SAPT-, QTAIM-, and NBO-Based Study, The Journal of Physical Chemistry A (J. Phys. Chem. A.), 116(9): 2322-2332 (2012).

[13] Lipkowski P., Grabowski S.J., Leszczynski J., Properties of the Halogen−Hydride Interaction:  An ab Initio and “Atoms in Molecules” Analysis, The Journal of Physical Chemistry A (J. Phys. Chem. A.), 110(34): 10296-10302 (2006).

[14] Solimannejad M., Hosseini S. M., Zabardasti A., Cooperative and Diminutive Interplay between Halogen, Hydride and Cation-σ Interactions, Physical Chemistry Research (Phys. Chem. Res.), 4(4): 583-589 (2016).

[16] Auffinger P., Hays F. A., Westhof E., Shing Ho P., Halogen Bonds in Biological Molecules, National Acad Sciences (Acad. Sci. U. S. A.), 101(48):16789-16794 (2004).

[17] Hardegger L. A., KuhnL A., Spinnler B., Anselm B., Ecabert L., Stihle R., Gsell M., Thoma B., Diez R., Benz J., Plancher J., Hartmann J. M., Banner G., Haap D. W., Diederich W., Systematic Investigation of Halogen Bonding in Protein–Ligand Interactions, (Angew. Chem. Int. Ed.), 50(1): 314-318 (2011).

[18] Metrangolo P., Resnati G., Halogen Bonding: A Paradigm in Supramolecular Chemistry, Chemistry: A European Journa (Chem. Eur. J.), 7(12):2 511-2519 (2001).

[20] Solimannejad M., Bayatmanesh E., Esrafili M. D., Interplay Between Lithium Bonding and Halogen Bonding in F3CX•••YLi•••NCCN and F3CX•••NCCN•••LiY Complexes (X = Cl, Br; Y = CN, NC), Physical Chemistry Research (Phys. Chem. Res.), 2(2):171-178 (2014).

[21] Solimannejad M., Malekani M., Alkorta I., Substituent Effects on the Cooperativity of Halogen Bonding, The Journal of Physical Chemistry A (J. Phys. Chem. A.), 117(26):5551-5557 (2013).

[24] Molina M. J., Rowland F. S., Stratospheric Sink for Chlorofluoromethanes: Chlorine Atom-Catalysed Destruction of Ozone, (Nature),249: 810-812 (1974).

[25] Francisco J. S., Ab Initio Characterization of HOClO3 and HO4Cl: Implications for Atmospheric Chemistry, The Journal of Physical Chemistry (J. Phys. Chem.), 99(36): 13422-13425 (1995). 

[27] Sponer J., Leszczynski J., Hobza P., Hydrogen Bonding, Stacking and Cation Binding of DNA Bases, Journal of Molecular Structure: THEOCHEM, 573:(1-3) 43-53 (2001).

[28] Riley K. E., Pitonak M., Cerny J., Hobza P., On the Structure and Geometry of Biomolecular Binding Motifs (Hydrogen-Bonding, Stacking, X−H···π): WFT and DFT Calculations, Journal of Chemical Theory and Computation, J. Chem. Theory Comput., 6(1): 66-80 (2010).

[29] Simonaitis R., Heicklen J., Perchloric Acid: A Possible Sink for Stratospheric Chlorine, Planetary and Space Science (Planet. Space Sci.), 23(11): 1567-1569 (1975).

[30] Harrison J.F., Relationship between the Charge Distribution and Dipole Moment Functions of CO and the Related Molecules CS, SiO, and SiS, The Journal of Physical Chemistry A (J. Phys. Chem. A.), 110 (37): 10848-10857 (2006).

[32] Bucher D., Kuyucak S., Polarization of Water in the First Hydration Shell of K+ and Ca2+ Ions, The Journal of Physical Chemistry B (J. Phys. Chem. B.), 112(35): 10786-10790 (2008).

[33] Frisch M.,Trucks G., Schlegel H., Scuseria G., Robb M., Cheeseman J., Montgomery Jr. J., Vreven T., Kudin K., Burant J., Pittsburgh P. A., Pople J. A., (2009) Gaussian 09, Revision A02. Gaussian Inc., Wallingford.

[34] Schmidt M. W., Baldridge K. K., Boatz J. A., Elbert S., Gordon M. S., Jensen J. H., Koseki S., Matsunaga N., Nguyen K. A., Su S. J., Windus T. L., Dupuis M., Montgomery J. A., General Atomic and Molecular Electronic Structure System, Journal of Computational Chemistry (J. Comput. Chem.), 14: 1347-1363 (1993).

[35] Frisch M.J., Pople J.A., Binkley J.S., Self-Consistent Molecular Orbital Methods 25. Supplementary Functions for Gaussian Basis Sets, The Journal of Chemical Physics (J. Chem. Phys.), 80(7): 3265 (1984).

[36] Boys S. F., Bernardi F. D., The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors, Molecular Physics (Mol. Phys.), 19(4): 553-566 (1970).

[37] Bader R. F. W., “Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford (1990).

[38] Popelier P.L.A., “Chemical Modelling: Applications and Theory, Atoms in Molecules, Introduction”, Pearson Education Limited, Prentice Hall, London, England (2000).

[39] Gu Q. Y., Lou S. C., “Table of Chemical Materials”, Jiangsu Science and Technology Press: Jiangsu, China (1998).

[40] Glendening E. D., Natural Energy Decomposition Analysis:  Extension to Density Functional Methods and Analysis of Cooperative Effects in Water Clusters, The Journal of Physical Chemistry A (J. Phys. Chem. A.), 109 (51): 11936-11940 (2005).

[42] Alkorta I., Elguero J., Non-conventional Hydrogen bonds, Chemical Society Reviews (J. Chem. Soc. ReV.), 27(2): 163-170 (1998).

[43] Bone R. G. A., Bader R. F. W., Identifying and Analyzing Intermolecular Bonding Interactions in van der Waals Molecules, The Journal of Physical Chemistry (J. Phys. Chem.) 100(26): 10892-10911 (1996).

[44] Rozas I., Alkorta I., Elguero J., Behavior of Ylides Containing N, O, and C Atoms as Hydrogen Bond Acceptors, Journal of the American Chemical Society (J. Am. Chem. Soc.) 122: 11154-11161 (2000).