Nickel(II) and Copper(II) Complexes of a New Tetradentate Schiff Base Ligand: Synthesis, Characterization, Thermal Studies and Use as Precursors for Preparation of NiO and CuO Nanoparticles

Document Type: Research Article

Authors

1 Department of Chemistry, Faculty of Science, Golestan University, Gorgan, I.R. IRAN

2 Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I.R. IRAN

3 Institute of Physic of the Czech Academy of Institute of Physic of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, GZECH REPUBILC

4 Institute of Physic of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, CZECH REPUBLIC

Abstract

A new tetradentate N2O2 Schiff base ligand (MeO-bph)2bn = N,N¢-bis(2-hydroxy-4-methoxybenzophenone)-1,4-butanediamine was prepared from the condensation of butane-1,4-diamine with 4-methoxy-2-hydroxybenzophenone and characterized by 1H-NMR spectroscopy and single-crystal X-ray diffraction. Its nickel(II) and copper(II) complexes characterized using elemental analyses (CHN) and IR spectroscopy. Thermogravimetric analysis of the Schiff base ligand and its Ni(II) and Cu(II) complexes revealed their thermal stability and decomposition pattern. Finally, the complexes were used for the preparation of NiO and CuO nanoparticles by solid-state thermal decomposition. The nanoparticles were characterized by FT-IR, XRD, and SEM. FT-IR and XRD confirmed the purity of the formed products NiO and CuO.

Keywords

Main Subjects


[3] Senol C., Hayvali Z., Dal H., Hokelek T., Syntheses, Characterizations and Structures of NO Donor Schiff Base Ligands and Nickel(II) and Copper(II) Complexes, J. Mol. Struct.,  997: 53-59 (2011).

[5] Khalaji A.D., Maghsodlou Rad S., Grivani G., Das D., Nickel(II) and Copper(II) Complexes with an Asymmetric Bidentate Schiff Base Ligand Derived from Furfurylamine: Synthesis, Spectral, XRD and Thermal Studies, J. Therm. Anal. Calorim., 103: 747-751 (2011).

[6] Zayed E.M., Mohamed G.G., Hindy A.M.M., Transition Metal Complexes of Novel Schiff Base: Synthesis, Spectroscopic Characterization and in Vitro Antimicrobial Activity of Complexes, J. Therm. Anal. Calorim., 120: 893-903 (2015).

[7] Zayed E.M., Zayed M.A., Hindy A.M.M., Thermal and Spectroscopic Investigation of Novel Schiff Base, Its Metal Complexes and Their Biological Activities, J. Therm. Anal. Calorim., 116: 391-400 (2014).

[8] Alan I., Kriza A., Badea M., Stanica N., Olar R., Synthesis and Characterization of Co(II), Ni(II), Zn(II) and Cd(II) Complexes with 5-bromo-N,N’-Bis-(salicylidene)-o-tolidine, J. Therm. Anal. Calorim., 111: 483-490 (2013).

[11] Bhowmik P., Drew M.G.B., Chattopadhyay S., Synthesis and Characterization of Nickel(II) and Copper(II) Complexes with Tetradentate Schiff Base Ligand, Inorg. Chim. Acta 366: 62-67 (2011).

[12] Biswas A., Drew M.G.B., Ghosh A., Nickel(II) and Copper(II) Complexes of Unsymmetrical Tetradentate Reduced Schiff Base Ligands, Polyhedron, 29: 1029-1034 (2010).

[13] Kianfar A.H., Keramat L., Dostani M., Shamsipur M., Roushani M., Nikpour F., Synthesis, Spectroscopy, Electrochemistry and Thermal Study of Ni(II) and Cu(II) Unsymmetrical N2O2 Schiff Base Complexes, Spectrochim. Acta A, 77: 424-429 (2010).

[14] Mukherjee P., Drew M.G.B., Figuerola A., Ghosh A., Incorporation of a Sodium Ion Guest in the Host of Copper(II)-Schiff Base Complexes: Structural and Magnetic Study, Polyhedron, 27: 3343-3350 (2008).

[17] Fun H.K., Kia R., Mirkhani V., Zargoshi H., {5,5’-Dihydroxy-2,2’-[o-phenylenebis(nitrilomethylidyne)] diphenolato}nickel(II) Dehydrate, Acta Cryst., E64: m1181-m1182 (2008).

[18] Ganji F, Kargar H, Kia R, Mirkhani V, Tahir MN, {4,4’-Dimethpxy-2,2’-[2,2-dimethoxypropane-1,3-diylbis(nitrilomethanylylidene)]diphenolato}copper(II) monohydrate, Acta Cryst. E68:m1255 (2012).

[19] Kargar H, Kia R, Ganji F, Mirkhani V, {4,4’-Dichloro-2,2’-[2,2-dimethoxypropane-1,3-diylbis(nitrilomethanylylidene)]diphenolato}copper(II), Acta Cryst. E68:m1135 (2012).

[23] Xiao M., Lu Y., Li Y., Song H., Zhu L, Ye Z., A New Type of p-Type NiO/ n-Type ZnO Nano-Heterojunctions with Ebnhanced Photocatalytic Activity, RSC Advances, 4: 34649-34653 (2014).

[24] Qu F., Wang Y., Wang Y., Zhou J., Ruan S., Template-Free Synthesis of Cu2O-Co3O4 Core-Shell Composites and Their Application in Gas Sensing, RSC Advances, 4: 24211-24216 (2014).

[25] Dong R., Ye Q., Kuang L., Lu X., Zhang Y., Zhang X., Tan G., Wen Y., Wang F., Enhanced Supercapacitor Performance of Mn3O4 Nanocrystals by Doping Transition Metal Ions, ACS Appl. Mater. Interfaces 5: 9508-9516 (2013).

[26] Kolodziejczak-Radzimska A., Jesionowski T., Zinc Oxide–From Synthesis to Application: A Review, Materials, 7: 2833-2881 (2014).

[27] Zhu Y., Guo H, Wu Y., Cao C., Tao S., Wu Z., Surface-Enables Superior Lithium Storage of High-Quality Ultrathin NiO Nanosheets, J. Mater. Chem. A, 2:7904-7911 (2014).

[28] Wang N., Chen L., Ma X., Yue J., Niu F., Xu H., Yang J., Qian Y., Facile Synthesis of Hierarchically Porous NiO Microtubes as Advanced Anode Materials for Lithium-Ion Batteries, J. Mater. Chem. A, 2: 16847-16850 (2014).

[30] Qian Y., Liu R., Wang Q., Xu J., Chen D., Shen G., Efficient Synthesis of Hierarchical Nanosheets for High-Performance Flexible all-Solid-State Supercapacitors, J. Mater. Chem. A 2:10917-10922 (2014).

[31] Chi D., Yang H., Du Y., Lv T., Sui G., Wang H., Lu J., Morphology-Controlled CuO Nanoparticles for Electroreduction of CO2 to Ethanol, RSC Adv 4: 37329-37332 (2014).

[32] Raul P.K., Senapati S., Sahoo A.K., Umlong I.M., Devi R.R., Thakur A.J., Veer V., CuO Nanorods: A Potential and Efficient Adsorbent in Water Purification, RSC Adv, 4: 40580-40587 (2014).

[33] Duan Y., Liu X., Han L., Asahina S., Xu D., Cao Y., Yao Y., Che S., Optically Active Chiral CuO Nanoflowers, J. Am. Chem. Soc., 136: 7193-7196 (2014).

[34] Wang C., Li Q., Wang F., Xia G., Liu R., Li D., Li N., Spendelow J.S., Wu G., Morphology-Dependent Performance of CuO Anodes via Facile and Controllable Synthesis for Lithium-Ion Batteries, Appl. Mater. Interfaces 6:1243-1250 (2014).

[35] Palatinus L., Chapuis G., SUPERFLIP – a Computer Program for the Solution of Crystal Structures by Charge Flipping in Arbitrary Dimensions, J. Appl. Crystallogr, 40: 786-790 (2007).

[36] Petricek V., Dusek M., Palatinus L., Crystallographic Computing System JANA2006: General Features, Z. Kristallogr. 229: 345-352 (2014).

[37] Diamond - Crystal and Molecular Structure Visualization. Crystal Impact - K. Brandenburg & H. Putz GbR, Rathausgasse 30, D-53111 Bonn.

[38] Yeap CS, Kia R, Fun HK, 4,4′,5,5′-Tetra­methyl-2,2′-[1,1′-(propane-1,3-diyldi­nitrilo)di­ethyl­­idyne]diphenol, Acta Crystallogr. E64: o1854 (2008).

[39] Fun HK, Kia R, Kargar H, N,N'-Bis(5-bromo-2-hydroxy­benzyl­idene)-2,2-dimethylpropane-1,3-diamine,Acta Crystallogr. E64: o1895-o1896 (2008).

[40] Fun HK, Kia R, Kargar H, Jamshidvand A, N,N'-Bis(2-hydr­oxy-3-eth­oxybenzyl­idene)butane-1,4-diamine,Acta Crystallogr. E65: o706 (2009).

[41] Jamshidvand A, Kia R, Kargar H, Tahir MN, 2-{[(4-{[(2-Hydroxyphenyl)(phenyl)-methylidene]amino}butyl)imino](phenyl)methyl}phenol, Acta Crystallogr. E68: o292 (2012).