The Effect of Essential Oil of Lavandula Angustifolia on Amyloid Beta Polymerization: An In Vitro Study

Document Type: Research Note

Authors

1 Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, I.R. IRAN + Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, ashan, I.R. IRAN

2 Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. IRAN

3 Clinical Biochemistry and Genetics Department, School of Medicine, Qazvin University of Medical Sciences, Qazvin, I.R. IRAN

4 Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. IRAN

Abstract

Alzheimer’s Disease (AD) is a progressive neurological disorder associated with cognitive and memory deficits. Accumulation of amyloid beta (Aβ) plaques is one of the major causes of AD. Therefore, inhibition of the plaque formation has been aimed to play a preventive role in the disease. Lavender, through some neuroprotective roles such as antioxidant effects, is known to be an effective candidate in the treatment of neurodegenerative disorders. In this study using Thioflavin T Measurement and Atomic Force Microscope (AFM) Imaging, we evaluated the effect of essential oil of lavender on Aβ polymerization. Thioflavin T Method showed that essential oil enhances the Aβ aggregation. The results of the AFM method also confirmed it. Our data antagonizes previous results indicating the clearing effect of aqueous extract of lavender on Aβ plaque. It seems that the different combination of essential oil and aqueous extract considerably determines if or not the aggregation occurs.

Keywords

Main Subjects


[1] Chang Y.J., Linh N.H., Shih Y.H., Yu H.M., Li M.S., Chen Y.R., Alzheimer's Amyloid-beta Sequesters Caspase-3 in Vitro via Its C-Terminal Tail, ACS Chem. Neurosci., 7(8): 1097-106 (2016)

[2] Pascoal T.A., Mathotaarachchi S., Mohades S., Benedet A.L., Chung C.O., Shin M., Wang S., Beaudry T., Kang M.S., Amyloid-Beta and Hyperphosphorylated Tau Synergy Drives Metabolic Decline in Preclinical Alzheimer's Disease, Mol Psychiatry, 22(2): 306-311(2017)

[4] Park H.J., Shabashvili D., Nekorchuk M.D., Shyqyriu E., Jung J.I., Ladd T.B., Moore B.D., Felsenstein K.M., Golde T.E., Retention in Endoplasmic Reticulum 1 (RER1) Modulates Amyloid-Beta (Abeta) Production by Altering Ttrafficking of Gamma-secretase and Amyloid Precursor Protein (APP), J. Biol. Chem., 287(48): 40629-40640 (2012)

[5] Bateman R.J., Munsell L.Y., Morris J.C., Swarm R., Yarasheski K.E., Holtzman D.M., Human Amyloid-Beta Synthesis and Clearance Rates as Measured in Cerebrospinal Fluid in Vivo, Nat. Med., 12(7): 856-861 (2006)

[6] Charkhkar H., Meyyappan S., Matveeva E., Moll J.R., McHail D.G., Peixoto N., Cliff R.O., Pancrazio J.J., Amyloid Beta Modulation of Neuronal Network Activity in Vitro, Brain Res., 1629: 1-9 (2015).

[7] Gupta V.K., Chitranshi N., Gupta V.B., Golzan M., Dheer Y., Wall R.V., Georgevsky D., King A.E., Vickers J.C., Amyloid Beta Accumulation and Inner Retinal Degenerative Changes in Alzheimer's Disease Transgenic Mouse, Neurosci. Lett., 623: 52-56 (2016).

[8] Leal N.S., Schreiner B., Pinho C.M., Filadi R., Wiehager B., Karlstrom H., Pizzo P., Ankarcrona M., Mitofusin-2 Knockdown Increases ER-Mitochondria Contact and Decreases Amyloid Beta-Peptide Production, J. Cell. Mol. Med., 20(9): 1686-1695 (2016).

[10] Sollvander S., Nikitidou E., Brolin R., Soderberg L., Sehlin D., Lannfelt L., Erlandsson A., Accumulation of Amyloid-Beta by Astrocytes Result in Enlarged Endosomes and Microvesicle-Induced Apoptosis of Neurons, Mol. Neurodegener, 11(1): 1-19 (2016).

[14] Cai H., Liang Q., Ge G., Gypenoside Attenuates Beta Amyloid-Induced Inflammation in N9 Microglial Cells via SOCS1 Signaling, Neural Plast., 2016: 1-10 (2016).

[15] Malinow R., New Developments on the Role of NMDA Receptors in Alzheimer's Disease, Curr. Opin. Neurobiol,  22(3): 559-563 (2012).

[16] Sanz-Blasco S., Pina-Crespo J.C., Zhang X., McKercher S.R., Lipton S.A., Levetiracetam Inhibits Oligomeric Abeta-Induced Glutamate Release from Human Astrocytes, Neuroreport, 27(9): 705-709 (2016).

[17] Fujiwara H., Takayama S., Iwasaki K., Tabuchi M., Yamaguchi T., Sekiguchi K., Ikarashi Y., Kudo Y., Kase Y., Yokukansan, a Traditional Japanese Medicine, Ameliorates Memory Disturbance and Abnormal Social Interaction with Anti-Aggregation Effect of Cerebral Amyloid Beta Proteins in Amyloid Precursor Protein Transgenic Mice, Neuroscience, 180: 305-313 (2011).

[18] Arefi Oskouie A., Farrokhi Yekta R., Rezaei Tavirani M., Soheili Kashani M., Goshadrou F., Lavandula angustifolia Effects on Rat Models of Alzheimer’s Disease Through the Investigation of Serum Metabolic Features Using NMR Metabolomics, Avicenna J. Med. Biotech., 10(2): 83-92 (2018)

[19] Soheili M., Rezaei Tavirany M., Salami M., Lavandula Angustifolia Extract Improves Deteriorated Synaptic Plasticity in an Animal Model of Alzheimer’s Disease, Iranian J. Basic Med. Sci., 18(11): 1147-1152 (2015).

[20] Angelova P.R., Abramov A.Y., Interaction of Neurons and Astrocytes Underlies the Mechanism of Abeta-Induced Neurotoxicity, Biochem Soc Trans,  42(5): 1286-1290 (2014).

[22] Garcia-Font N., Hayour H., Belfaitah A., Pedraz J., Moraleda I., Iriepa I., Bouraiou A., Chioua M., Marco-Contelles J., Potent Anticholinesterasic and Neuroprotective Pyranotacrines as Inhibitors of Beta-Amyloid Aggregation, Oxidative Stress and Tau-Phosphorylation for Alzheimer's Disease, Eur. J. Med. Chem., 118: 178-192 (2016).

[23] Kim H.G., Kim J.Y., Whang W.W., Oh M.S., Neuroprotective Effect of Chunghyuldan from Amyloid Beta Oligomer Induced Neuroinflammation in Vitro and in Vivo, Can. J. Physiol. Pharmacol.,  92(6): 429-437 (2014).

[24] Doens D., Fernandez P.L., Microglia Receptors and Their Implications in the Response to Amyloid Beta for Alzheimer's Disease Pathogenesis, J Neuroinflammation,  11:  1-14 (2014).

[25] Wes P.D., Sayed F.A., Bard F., Gan L., Targeting Microglia for the Treatment of Alzheimer's Disease, Glia, 64(10): 1710-1732 (2016).

[27] Soheili M., Salami M., Lavandula angustifolia biological characteristics: An in vitro Study, j. cell. Physiol., 234(9): 1-7 (2019)

[28] Zhao Y., Chen R., Wang Y., Qing C., Wang W., Yang Y., In Vitro and In Vivo Efficacy Studies of Lavender angustifolia Essential Oil and Its Active Constituents on the Proliferation of Human Prostate Cancer, Integr. Cancer. Ther., 16(2): 215-226 (2017).

[29] Lakusic B., Lakusic D., Ristic M., Marcetic M., Slavkovska V., Seasonal Variations in the Composition of the Essential Oils of Lavandula Angustifolia (Lamiacae), Nat Prod Commun,  9(6), 859-862 (2014).

[30] Giovannini D., Gismondi A., Basso A., Canuti L., Braglia R., Canini A., Mariani F., Cappelli G., Lavandula angustifolia Mill. Essential Oil Exerts Antibacterial and Anti-Inflammatory Effect in Macrophage Mediated Immune Response to Staphylococcus Aureus, Immunol. Invest., 45(1): 11-28 (2016).

[31] Kashani M.S., Tavirani M.R., Talaei S.A., Salami M., Aqueous Extract of Lavender (Lavandula angustifolia) Improves the Spatial Performance of a Rat Model of Alzheimer's Disease, Neurosci Bull,  27(2): 99-106 (2011).

[32] Fujiwara H., Iwasaki K., Furukawa K., Seki T., He M., Maruyama M., Tomita N., Kudo Y., Higuchi M., Uncaria Rhynchophylla, a Chinese Medicinal Herb, has Potent Antiaggregation Effects on Alzheimer's Beta-Amyloid Proteins, J Neurosci Res,  84(2), 427-433 (2006).

[33] Sengupta U., Nilson A.N., Kayed R., The Role of Amyloid-beta Oligomers in Toxicity, Propagation, and mmunotherapy, E. BioMedicine, 6: 42-49 (2016).

[34] Marr R.A., Hafez D.M., Amyloid-beta and Alzheimer's Disease: the Role of Neprilysin-2 in Amyloid-Beta Clearance, Front Aging Neurosci, 6: 1-7 (2014).

[35] Bradley B.F., Starkey N.J., Brown S.L., Lea R.W., Anxiolytic Effects of Lavandula Angustifolia Odour on the Mongolian Gerbil Elevated Plus Maze, J. Ethnopharmacol,  111(3): 517-255 (2007).

[36] Soheili M., Tavirani M.R., Salami M., Clearance of Amyloid Beta Plaques from Brain of Alzheimeric Rats by Lavandula angustifolia, Neuroscience & Medicine,  3(4): 362-367 (2012).

[37] Herman A., Tambor K., Herman A., Linalool Affects the Antimicrobial Efficacy of Essential Oils, Curr Microbiol, 72(2): 165-172 (2016).

[38] Ono K., Li L., Takamura Y., Yoshiike Y., Zhu L., Han F., Mao X., Ikeda T., Takasaki J., Phenolic Compounds Prevent Amyloid Beta-Protein Oligomerization and Synaptic Dysfunction by Site-Specific Binding, J Biol Chem, 287(18): 14631-14643 (2012).

[39] Lim S., Choi J.G., Moon M., Kim H.G., Lee W., Bak H.R., Sung H., Park C.H., Kim S.Y., An Optimized Combination of Ginger and Peony Root Effectively Inhibits Amyloid-beta Accumulation and Amyloid-beta-Mediated Pathology in AbetaPP/PS1 Double-Transgenic Mice, J Alzheimers Dis, 50(1): 189-200 (2016).

[40] Snow A.D., Sekiguchi R.T., Nochlin D., Kalaria R.N., Kimata K., Heparan Sulfate Proteoglycan in Diffuse Plaques of Hippocampus But not of Cerebellum in Alzheimer's Disease Brain, Am J Pathol, 144(2): 337-347 (1994).

[41] Derakhshankhah H., Hajipour M.J., Barzegari E., Lotfabadi A., Ferdousi M., Saboury A.A., Ng E.P., Raoufi M., Awala H., Zeolite Nanoparticles Inhibit Abeta-Fibrinogen Interaction and Formation of a Consequent Abnormal Structural Clot, ACS Appl Mater Interfaces,  8(45): 30768-30779 (2016).

[42] Porter T., Bharadwaj P., Groth D., Paxman A., Laws S.M., Martins R.N., Verdile G., The Effects of Latrepirdine on Amyloid-beta Aggregation and Toxicity, J. Alzheimers Dis., 50(3): 895-905 (2016).