Solubility of Cis, Cis-Muconic Acid in Various Polar Solvents from 298.15 K to 348.15 K

Document Type: Research Note

Authors

1 Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, ITALY

2 Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, ITALY

Abstract

The present work concerns with an investigation on the solubility of cis,cis-muconic acid dissolution in different polar solvents by characterizing and modeling the dissolution as a function of temperature. Water, ethanol, 2-propanol and acetic acid have been investigated as solvents in the range temperatures from a 298.15 to 348.15 K. Owing to the absence of cis,cis-muconic acid solubility data, the molar fraction and temperature were correlated using the modified Apelblat equation model, which is applied for the mathematic fitting of experimental data.A total relative average deviation of 3.54% was obtained for the experimental results and the solubility data obtained with the model, thus attesting the adequacy for this study. The use of modified Apelblat equation also allowed to determine the molar enthalpy and molar entropy of dissolution. The dissolution of cis,cis-muconic acid in water, ethanol, 2-propanol and acetic acid, over temperatures ranging from 298.15 to 348.15 K, has been shown to be exothermic.

Keywords

Main Subjects


[1] Yoshikawa N., Mizuno S., Ohta K., Suzuki M., Microbial Production of Cis,cis-muconic AcidJournal of Biotechnology14(2):203-210 (1990).

[2] Niu W., Draths K.M., Frost J.W., Benzene-Free Synthesis of Adipic Acid, Biotechnology Progress18(2):201-211 (2002).

[3] Hsieh J.H., Barer S.J., Maxwell P.C., Muconic Acid Productivity by a Stabilized Mutant Microorganism Population",  US Patent 4 535 059 (1985).

[4] Mizuno S., Yoshikawa N., Seki M., Mikawa T., Imada Y., Microbial Production of Cis, cis-muconic Acid from Benzoic Acid, Applied Microbiology and Biotechnology28(1):20-25 (1988).

[5] Tsuji M., Kuwahara M., Accumulation of Cis, cis-Muconic Acid from Benzoic Acid by a Mutant Induced From Corynebacterium GlutamicumHakko Kogaku Kaishi55:95-97 (1977).

[6] Schmidt E., Knackmuss H.J., Production of Cis,cis-muconate From Benzoate and 2-fluoro-cis,cis-muconate From 3-Fluorobenzoate by 3-Chlorobenzoate Degrading Bacteria", Applied Microbiology and Biotechnology, 20(5):351-355 (1984).

[7] Maxwell P.C., Shapiro L.M., Tareza J.E., Process to the Production of Muconic Acid, U.S. Patent 4,588,688 (1986).

[8] Gomi S., Horiguchi S., Production of Muconic Acid", Japan Kokai Patent 86-185192(1986).

[9] Ma R., Guo M., Zhang X., Selective Conversion of Biorefinery Lignin into Dicarboxylic AcidsChem. Sus. Chem, 7(2):412-415 (2014).

[10] Hur J., O'Connell J.P., Bae K.K., Kang K.S., Kang J.W., Measurements and Correlation of Solid-Liquid Equilibria of the HI + I(2) + H(2)O SystemInternational Journal of Hydrogen Energy36(14):8187-8191 (2011).

[11] Hei E., Liu H., Shen J., Sun J., Hu Y., Determination of the Solubilities of 2,4-Dichlorobenzaldehyde in Organic Solvents, Chinese Journal of Chemical Engineering3(3):155-162 (1995).

[12] Draths K.M., Frost J.W., Environmentally Compatible Synthesis of Adipic Acid From D-Glucose, Journal of the American Chemical Society116(1):399-400 (1994).

[13] Thomas J.M., Raja R., Johnson B.F.G., O'Connell T.J., Sankar G., Khimyak T., Bimetallic Nanocatalysts for the Conversion of Muconic Acid to Adipic Acid, Chemical Communications9(10):1126-1127 (2003).

[14] Scelfo S., Pirone R., Russo N., Highly Efficient Catalysts for the Synthesis of Adipic Acid From Cis,Cis-Muconic AcidCatalysis Communications84:98-102 (2016).

[15] Polen T., Spelberg M., Bott M., Toward Biotechnological Production of Adipic Acid and Precursors from Biorenewables, Journal of Biotechnology167(2):75-84 (2013).

[16] Stahl W.F., "Organic Chemicals A-AI" In: International S., Editor. Chemical Economics Handbook, Menlo Park (1996).

[17] Davis M.C., Wesolowski D.J., Rosenqvist J., Brantley S.L., Mueller K.T., Solubility and Near-Equilibrium Dissolution Rates of Quartz in Dilute NaCl Solutions at 398-473K Under Alkaline Conditions, Geochimica et Cosmochimica Acta75(2):401-415 (2011).

[18] Steele-MacInnis M., Han L., Lowell R.P., Rimstidt J.D., Bodnar R.J., The Role of Fluid Phase Immiscibility in Quartz Dissolution and Precipitation in Sub-Seafloor Hydrothermal Systems",  Earth and Planetary Science Letters321-322:139-151 (2012).

[19] Apelblat A., Manzurola E., Solubility of Oxalic, Malonic, Succinic, Adipic, Maleic, Malic, Citric, and Tartaric Acids in Water From 278.15 to 338.15 KThe Journal of Chemical Thermodynamics19(3):317-320 (1987).

[20] Ding Z., Zhang R., Long B., Liu L., Tu H., Solubilities of M-Phthalic Acid in Petroleum Ether and Its Binary Solvent Mixture of Alcohol + Petroleum Ether, Fluid Phase Equilibria, 292(1-2):96-103 (2010).

[21] Delgado D.R., Martínez F., Solubility and Solution Thermodynamics of Sulfamerazine and Sulfamethazine in Some Ethanol+Water MixturesFluid Phase Equilibria360:88-96 (2013).

[22] Riaz M., Yussuf M.A., Kontogeorgis G.M., Stenby E.H., Yan W., Solbraa E., Distribution of MEG and Methanol in Well-Defined Hydrocarbon and Water Systems: Experimental Measurement and Modeling Using the CPA EoS, Fluid Phase Equilibria337:298-310 (2013).

[23] Shakeel F., Haq N., Siddiqui N.A., Solubility and Thermodynamic Function of Vanillin in Ten Different Environmentally Benign Solvents, Food Chemistry180:244-248 (2015).

[24] Cassens J., Ruether F., Leonhard K., Sadowski G., Solubility Calculation of Pharmaceutical Compounds - A Priori Parameter Estimation Using Quantum-Chemistry, Fluid Phase Equilibria299(1):161-170 (2010).

[25] Zhang C.L., Zhao F., Wang Y., Thermodynamics of the Solubility of Sulfamethazine in Methanol, Ethanol, 1-Propanol, Acetone, and Chloroform from 293.15 to 333.15 K, Journal of Molecular Liquids159(2):170-172 (2011).

[26] Sun W., Qu W., Zhao L., Solubilities of 4-Formylbenzoic Acid in Ethanoic Acid, Water, and Ethanoic Acid/Water Mixtures with Different Compositions From (303.2 to 473.2) KJournal of Chemical and Engineering Data55(10):4476-4478 (2010).

[27] Sunsandee N., Hronec M., Štolcová M., Leepipatpiboon N., Pancharoen U., Thermodynamics of the Solubility of 4-Acetylbenzoic Acid in Different Solvents From 303.15 to 473.15 K, Journal of Molecular Liquids180:252-259 (2013).

[28] Zhang Q., Yang Y., Cao C., Cheng L., Shi Y., Yang W., Hu Y., Thermodynamic Models for Determination of the Solubility of Dibenzothiophene in  (Methanol + Acetonitrile) Binary Solvent Mixtures, The Journal of Chemical Thermodynamics, 80:7-12 (2015).

[29] Sigma-Aldrich Co. LLC., "Material Safety Data Sheet of cis, cis-Muconic Acid", Editor. Merck KGaA, Darmstadt, Germany (2014).

[30] Sunsandee N., Suren S., Leepipatpiboon N., Hronec M., Pancharoen U., Determination and Modeling of Aqueous Solubility of 4-Position Substituted Benzoic Acid Compounds in a High-Temperature Solution, Fluid Phase Equilibria338:217-223 (2013).

[31] Suren S., Sunsandee N., Stolcova M., Hronec M., Leepipatpiboon N., Pancharoen U., Kheawhom S., Measurement on the Solubility of Adipic Acid in Various Solvents at High Temperature and Its Thermodynamics Parameters, Fluid Phase Equilibria360: 332-337 (2013).

[32] Liu J.Q., Cao X.X., Ji B., Zhao B., Determination and Correlation of Solubilities of (S)-Indoline-2-Carboxylic Acid in Six Different Solvents from (283.15 to 358.15) K, Journal of Chemical and Engineering Data, 58(9):2414-2419 (2013).

[33] Liu J.Q., Qian C., Chen X.Z., Solubilities of 2,4-Dinitro-L-Phenylalanine in Monosolvents at (273.15 to 368.15) KJournal of Chemical and Engineering Data55(11):5302-5304 (2010).

[34] Liu J.Q., Wang Y., Tang H., Wu S., Li Y.Y., Zhang L.Y., Bai Q.Y., Liu X., Experimental Measurements and Modeling of the Solubility of Aceclofenac in Six Pure Solvents From (293.35 to 338.25) K, Journal of Chemical and Engineering Data, 59(5):1588-1592 (2014).

[35] Zhang Y., Wang H.H., Wei S., Liu J.Q., Wang W., Determination and Correlation of Solubilities of 2-Isopropylthioxanthone (ITX) in Seven Different Solvents From (299.15 to 329.85) K, Journal of Chemical and Engineering Data60(3):941-946 (2015).

[36] Perry R.H., Don W.G., "Perry's Chemical Engineers’ Handbook - 7th Ed", McGraw-Hill, New York (1999).

[37] Apelblat A., Manzurola E., Solubilities of o-Acetylsalicylic, 4-Aminosalicylic, 3,5-Dinitrosalicylic, and P-Toluic Acid, and Magnesium-DL-Aspartate in Water from T = (278 to 348) K, Journal of Chemical Thermodynamics31(1):85-91 (1999).

[38] Apelblat A., Manzurola E., Solubilities of Manganese, Cadmium, Mercury and Lead Acetates in Water From T = 278.15 K to T = 340.15 K, Journal of Chemical Thermodynamics33(2):147-153 (2001).

[39] Zhang C.L., Wang F.A., Wang Y., Solubilities of Sulfadiazine, Sulfamethazine, Sulfadimethoxine, Sulfamethoxydiazine, Sulfamonomethoxine, Sulfamethoxazole, and Sulfachloropyrazine in Water From (298.15 to 333.15) K, Journal of Chemical and Engineering Data52(5):1563-1566 (2007).

[40] Bourgois D., Thomas D., Fanlo J.L., Vanderschuren J., Solubilities at High Dilution of Toluene, Ethylbenzene, 1,2,4-Trimethylbenzene, and Hexane in di-2-Ethylhexyl, Diisoheptyl, and Diisononyl Phthalates, Journal of Chemical and Engineering Data51(4):1212-1215 (2006).

[41] Lerchner J., Kirchner R., Seidel J., Wählisch D., Wolf G., König W.A., Lucklum R., Determination of Molar Heats of Absorption of Enantiomers Into Thin Chiral Coatings by Combined IC-Calorimetric and Microgravimetric (QMB) Measurements. II. Thermodynamics of Enantioselectivity in Modified Cyclodextrins, Thermochimica Acta, 445(2):98-103 (2006).