Improving the Proton Conductivity and Antibacterial Properties of Sulfonated Polybenzimidazole/ZnO/Cellulose with Surface Functionalized Cellulose/ZnO Bionanocomposites

Document Type: Research Article

Authors

1 Department of Chemistry, Darab Branch, Islamic Azad University, Darab, I.R. IRAN

2 Department of Chemistry, Darab Branch, Islamic Azad University, Darab, I.R. IRAN

Abstract

New bionanocomposite proton exchange membranes were prepared from sulfonated polybenzimidazole (s-PBI) and various amounts of sulfonated ZnO/cellulose nanohybrids (ZnO/cellulose-SO3H). The use of ZnO/cellulose-SO3H compensates for the decrease in ion exchange capacity of membranes observed when non-sulfonated nano-fillers are utilized. The strong –SO3H/–SO3H interaction between s-PBI chains and ZnO/cellulose-SO3H hybrids leads to ionic cross-linking in the membrane structure, which increases both the thermal stability and methanol resistance of the membranes. The ZnO/cellulose -SO3H in the membranes served as spacers for polymer chains to provide extra space for water permeation, so as to bring high permeation rates to the complex membranes. Moreover, the membranes exhibited excellent antibacterial activities against S. aureus and E. coli. A.

Keywords

Main Subjects


[1] Wainright J.S., Wang J.-T., Weng D., Savinell R.F., Litt M.H., Acid Doped Polybenzimidazoles: A New Polymer Electrolyte, J. Electrochem. Soc., 142: L121-L123 (1995).

[2] Glipa X., Bonnet B., Mula B., Jones D.J., Rozière J., Investigation of the Conduction Properties of Phosphoric and Sulfuric Acid Doped Polybenzimidazole, J. Mater. Chem., 9: 3045-3049 (1999).

[3] Ma Y.L., Wainright J.S., Litt M.H., Savinell R.F., Conductivity of PBImembranes for High-Temperature Polymer Electrolyte Fuel CellsJ. Electrochem. Soc., 151: A8-A16 (2004).

[5] Li Q., He R., Berg R.W., Hjulers H.A., Bjerrum N.J., Water Uptake and Doping of Polybenzimidazoles as Electrolyte Membranes for Fuel Cells, Solid State Ionics, 168: 177-185 (2004).

[6] Asensio J.A., Borrós S., Gómez-Romero P., Polymer Electrolyte Fuel Cells Based on Phosphoric-Acid Impregnated Poly(2,5-benzimidazole) Membranes, J. Electrochem. Soc., 151: A304-A310 (2004).

[8] He R., Li Q., Bach A., Jensen J.O., Bjerrum N.J., Physicochemical Properties of Phosphoric Acid Doped Polybenzimidazole Membranes for Fuel Cells, J. Membr. Sci., 277: 38-45 (2006).

[9] Lobato J., Ca˜nizares P., Rodrigo M.A., Linares J.J., Aguilar J.A., Improved Polybenzimidazole Films for H3PO4-Doped PBI-Based High Temperature PEMFC, J. Membr. Sci., 306: 47-55 (2007).

[10] He R., Li Q., Jensen J.O., Bjerrum N.J., Doping Phosphoric Acid in Polybenzimidazole Membranes for High Temperature Proton Exchangemembrane Fuel Cells, J. Polym. Sci. Part A: Polym. Chem., 45: 2989-2997 (2007).

[11] Xing B.Z., Savadogo O., The Effect of Acid Doping on the Conductivity of Polybenzimidazole, J. New Mater. Electrochem. Syst., 2: 95–101 (1999).

[12] Asensio J.A., Borros S., Gomez-Romero P., Proton-Conducting Polymers Based on Benzimidazole and Sulfonated Benzimidazole, J. Polym. Sci. Part A: Polym. Chem., 40: 3703-3710 (2002).

[14] Qing S., Huang W., Yan D., Synthesis and Properties of Soluble Sulfonated Polybenzimidazoles, React. Funct. Polym., 66: 219-227 (2006).

[15] Ito A., Hwang S.T., Permeation of Propane and Propylene Through Cellulosic Polymer Membranes, J. Appl. Polym. Sci., 38: 483-490 (1989).

[16] Cong H., Radosz M., Towler B.F., Shen Y., Polymer–Inorganic Nanocomposite Membranes for Gas Separation, Sep. Purif. Technol., 55: 281-291 (2007).

[17] Joly C., Samaihi M., Porcar L., Noble R.D., Polyimide-Silica Composite Materi- Als: How Does Silica Influence Their Microstructure and Gas Permeationpro- Perties, Chem. Mater., 11: 2331-2338 (1999).

[18] Taherkhani M., Chemical Investigation and Protective Effects of Bioactive Phytochemicals from Artemisia Ciniformis, Iran. J. Chem. Chem. Eng. (IJCCE), 35: 15-26 (2016).

[19] Biffinger J.C., Ray R., Little B., Ringeisen B.R., High Power Density from a Miniature Microbial Fuel Cell Using Shewanella Oneidensis DSP10, Environ. Sci. Technol., 41: 1444–1449 (2007).

[21] Inoue K., Ferrante P., Hirano Y., Yasukawa T., Shiku H., Matsue T., A Competitive Immunochromatographic Assay for Testosterone Based on Electrochemical Detection, Talanta, 73: 886-892 (2007).

[22] Bonn´e M.J., Edler K., Buchanan J.G., Wolverson D., Thielemans W., Psillakis E., Helton M., Marken F., Thin-Film Modified Electrodes with Reconstituted Cellulose−PDDAC Films for the Accumulation and Detection of Triclosan. J. Phys. Chem. C, 112: 2660–2666 (2008).

[26] Katepetch C., Rujiravanit R., Tamura H., Formation of Nanocrystalline ZnO Particles into Bacterial Cellulose Pellicle by Ultrasonic-Assisted in Situ Synthesis, Cellulose, 20: 1275-1292 (2013).

[28] Ahmadizadegan H., Effect of Adding Nanoclay (Cloisite-30B) on the Proton Conductivity of Sulfonated Polybenzimidazole, Nanochem Res., 2: 96-108 (2017).

[29] Liu Y.L., Hsu C.Y., Wei W.L., Jeng R.J., Preparation and Thermal Properties of Epoxy-Silica Nanocomposites Fromnanoscale Colloidal Silica, Polym, 44: 5159-5167 (2003).

[31] Li C., Sun G., Ren S., Liu J., Wang Q., Wu Z., Sun H., Jin W., Casting Nafionsulfonated Organosilica Nano-Composite Membranes Used in Direct Methanol Fuel Cells, J. Membr. Sci., 272: 50-57 (2006).

[32] He R., Li Q., Xiao G., Bjerrum N.J., Proton Conductivity of Phosphoric Acid Doped Polybenzimidazole and Its Composites with Inorganic Proton Conductors, J. Membr. Sci., 226: 169-184 (2003).

[33] Fu F., Li L., Liu L., Cai J., Zhang Y., Zhou J., Zhang L., Construction of Cellulose Based ZnO Nanocomposite Films with Antibacterial Properties Through One-Step Coagulation, ACS Appl. Mater. Interfaces, 7: 2597–2606 (2015).

[34] Singh G., Joyce E.M., Beddow J., Mason T.J., Evaluation of Antibacterial Activity of ZnO Nanoparticles Coated Sonochemically onto Textile Fabrics, J. Microbiol. Biotechnol. Food Sci., 2: 106-120 (2012).

[35] Perelshtein I., Ruderman E., Perkas N., Tzanov T., Beddow J., Joyce E., Mason T.J., Blanes M., Molla K., Patlolla A., Chitosan and Chitosan-ZnO-Based Complex Nanoparticles: Formation, Characterization, and Antibacterial Activity,
J. Mater. Chem. B, 1: 1968-1976 (2013).

[36] Anitha S., Brabu B., Thiruvadigal D.J., Gopalakrishnan C., Natarajan T.S., Optical, Bactericidal and Water Repellent Properties of Electrospun Nano-composite Membranes of Cellulose Acetate and ZnO, Carbohydr. Polym., 97: 855-855 (2013).