Optimization of Microbial Hydrogen Production from Maize Stalk Using an Isolated Strain

Document Type: Research Article


1 o Process Research Laboratory, Department of Chemical Engineering, Annamalai University, Annamalainagar – 608 002, INDIA

2 Bio Process Research Laboratory, Department of Chemical Engineering, Annamalai University, Annamalainagar – 608 002, INDIA


Experimental designs were applied for optimizing media and process parameters for hydrogen production from maize stalk hydrolyzate by a newly isolated facultative strain.Plackett-Burman design was used to identify the significant components and using this method the media components - glucose, yeast extract, malt extract, peptone, and NaCl were identified as significant variables influencing the production of hydrogen. The concentrations of these components were optimized using Central Composite Design (CCD) and were found to be:  glucose, 19.25g/L; peptone, 5.64g/L; malt extract, 1.64g/L; yeast extract, 3.16g/L and NaCl, 4.312g/L. For further maximizing the production of hydrogen, the process parameters including pH, temperature and fermentation time were optimized by adopting Box-Behnken design. A maximum hydrogen yield of 0.91 mol H2/mol substrate was achieved under the optimum conditions of pH, 7.0; temperature, 34.5oC and fermentation time, 42.5h.


Main Subjects

[1] Shao-Yi H., Yu-Tuan C., Optimization of Biohydrogen Production with Biomechatronics, J. Nanomater., 2014:1-11 (2014).

[2] Nath K., Das D., Improvement of Fermentative Hydrogen Production: Various Approaches, Appl. Microbiol. Biotechnol., 65: 520-529 (2004).

[3] Kapdan I K., Kargi F., Bio-Hydrogen Production from Waste Materials, Enzyme Microb. Technol., 38:569-582 (2006).

[4] Wang J., Wan W., Experimental Design Methods for Fermentative Hydrogen Production: A Review, Int. J. Hydrogen Energy, 34: 235-244 (2009).

[5] Winter C J., Into the Hydrogen Energy Economy-Milestones, Int. J. Hydrogen Energy, 30: 681-685 (2005).

[6] Nath K., Das D., Hydrogen from Biomass, Curr. Sci., 85:265-271 (2003).

[7] Balat H., Kirtay E., Hydrogen from Biomass-Present Scenario and Future Prospects, Int. J. Hydrogen Energy, 5:7416-7426 (2010).

[8] Harai E., Kapas A., Lanyi S., Abraham B., Nagy I., Muntean O., Biohydrogen Production by Photofermentation of Lactic Acid Using Thiocapsa roseopersicina,  Sci. Bull., 72:151-160 (2010).

[9] Gadhamshetty V., Sukumaran A., Nirmalakhandan N., Myint M T., Photofermentation of Malate for Biohydrogen Production—A Modeling Approach, Int. J. Hydrogen Energy, 33:2138-2146 (2008).

[10] Afsar N., Ozgur E., Gurgan M., Vrije T de., Yucel M., Gunduz U., Eroglu I., Hydrogen Production by R. Capsulatus on Dark Fermenter Effluent of Potato Steam Peel Hydrolysate, Chem. Eng. Trans.,18:385-390 (2009).

[11] Chong M L., Sabaratnam V., Shirai Y., Hassan M A., Biohydrogen Production from Biomass and Industrial Wastes by Dark Fermentation, Int. J. Hydrogen Energy, 34:3277-3287 (2009).

[12] Patrick C H., Fermentative Hydrogen Production: Principles, Progress, and Prognosis, Int. J. Hydrogen Energy, 34:7379-7389 (2009).

[13] Anish G., Luigi F., Francesco P., Eric T., Renaud E., Piet N L L., Giovanni E., A Review on Dark Fermentative Biohydrogen Production from Organic Biomass: Process Parameters and Use of By-Products, Applied Energy, 144: 73-95 (2015).

[14] Fangkum A., Reungsang A., Biohydrogen Production from Sugarcane Bagasse Hydrolysate by Elephant Dung: Effects of Initial pH and Substrate Concentration, Int. J. Hydrogen Energy, 36(14): 8687-8696 (2011).

[15] Chang A C C., Tu Y H., Huang M H., Lay C H., Lin C.Y., Hydrogen Production by the Anaerobic Fermentation from Acid Hydrolysed Rice Straw Hydrolysate, Int. J. Hydrogen Energy, 36(21): 14280-14288 (2011).

[16] Panagiotopoulos I A., Bakker R.R., de Vrije T., Claassen P.A.M., Koukios E.G., Dilute-Acid Pretreatment of Barley Straw for Biological Hydrogen Production Using Caldicellulosiruptor saccharolyticus, Int. J. Hydrogen Energy, 37(16): 11727-11734 (2012).

[17] Zhao L., Guang-Li C., Ai-Jie W., Hong-Yu R., De D., Zi-Nan L., Xiao-Yu G., Cheng-Jiao X., Nan-Qi R., Fungal Pretreatment of Cornstalk with Phanerochaete chrysosporium for Enhancing Enzymatic Saccharification and Hydrogen Production, Bioresour. Technol., 114: 365-369 (2012).

[18] Godliving Y S M., Recent Advances in Pretreatment of Lignocellulosic Wastes and Production of Value Added Products, African J. Biotechnol., 8(8): 1398-1415 (2009).

[19] Wang J., Wan W., Factors Influencing Fermentative Hydrogen Production: A Review, Int. J. Hydrogen Energy, 34: 799-811 (2009).

[20] Sureewan S., Alissara R., Media Optimization for Biohydrogen Production From Waste Glycerol by Anaerobic Thermophilic Mixed Cultures, Int. J. Hydrogen Energy, 37: 15473-15482 (2012).

[21] Ying Z., Shang-Tian Y., Effect of pH on Metabolic Pathway Shift in Fermentation of Xylose by Clostridium tyrobutyricum, J. Biotechnol., 110: 143-157 (2004).

[22] Ji H.J., Dae S.L., Donghee P., Woo-Seok C., Jong M.P., Optimization of Key Process Variables for Enhanced Hydrogen Production by Enterobacter aerogenes Using Satistical Methods, Bioresour. Technol., 99: 2061–2066 (2008).

[23] Box G.E.P., Hunter J.S., Multi-Factor Experimental Designs for Exploring Response Surfaces, Ann. Math. Stat., 28: 195-241 (1957).

[24] Box G.E.P., Hunter J.S., On the Experimental Attainment of Optimum Conditions, J. Roy. Statist. Soc., 13:1-45 (1951).

[25] Argun H., Kargi F., Kapdan I., Oztekin R., Biohydrogen Production by Dark Fermentation of Wheat Powder Solution: Effects of C/N and C/P Ratio on Hydrogen Yield and Formation Rate, Int. J. Hydrogen Energy, 33:1813–1819 (2008).

[26] Lin CYC Y., Lay C.H., Carbon/Nitrogen-Ratio Effect on Fermentative Hydrogen Production by Mixed Microflora, Int. J. Hydrogen Energy, 29: 41–45 (2004).

[27] Rukiye O., Ilgi K. K., Fikret K., Hidayet A., Optimization of Media Composition for Hydrogen Gas Production From Hydrolyzed Wheat Starch by Dark Fermentation, Int. J. Hydrogen Energy, 33:4083-4090 (2008).

[28] Reed L.H., Douglas L.K., Stuart J.B., Corey W.R., Wilhelmd W.W., Engineering, Nutrient Removal, and Feedstock Conversion Evaluations of Four Corn Stover Harvest Scenarios, Biomass Bioenergy, 31: 126–136 (2007).

[29] Bakonyi P., Nemestothy N., Lovitusz E., Belafi-Bako K., Application of Plackett-Burman Experimental Design to Optimize Biohydrogen Fermentation by E. coli (XL1-BLUE), Int. J. Hydrogen Energy, 36: 13949-13954 (2011).

[30] Dong-Hoon K, Sang-Hyoun K, Hang-Sik S., Sodium Inhibition of Fermentative Hydrogen Production, Int. J. Hydrogen Energy, 34: 3295-3304 (2009).

[31] Ghosh S., Joy S., Das D., Multiple Parameters Optimization for Maximization of Hydrogen Production Using Defined Microbial Consortia, Indian. J. Biotech., 10:196-201 (2011).

[32] Karen T., Constanze P., Gary S.R., Armen T., Characterization of Escherichia coli [ NiFe ]  Hydrogenase Distribution During Fermentative Growth at Different pHs., Cell Biochem. Biophys., 62(3): 433-440 (2012).