Rapid and Simultaneous Determination of Montelukast, Fexofenadine and Cetirizine Using Partial Least Squares and Artificial Neural Networks Modeling

Document Type: Research Article

Authors

1 Department of Chemistry, Faculty of Sciences, Babol Noshirvani University of Technology, Babol, I.R. IRAN

2 Department of Chemistry, Faculty of Sciences, Payame Noor University, Tehran, I.R. IRAN

3 Department of Chemistry, Faculty of Science, Babol Noshirvani University of Technology, Babol, I.R. IRAN

Abstract

Simultaneous determination of pharmaceutical compounds and accurate quantitative prediction of them are of great interest in the clinical and laboratory-based investigations.This work has focused on a comprehensive comparison of Partial Least-Squares (PLS-1) and Artificial Neural Networks (ANN) as two powerful types of chemometric methods. For this purpose, montelukast (MONT), fexofenadine (FEXO) and cetirizine (CET) were studied as three pharmaceuticals whose UV-Vis absorption spectra highly overlap each other. The cross-validation leave-one-sample-out procedure was applied and the optimum number of factors was determined. The developed models were subsequently validated through testing with an independent dataset. Furthermore, a simple and fast method for wavelength selection (WS-PLS-1) in the calibration step was presented which involved the calculation of the Net Analyte Signal Regression Plot (NASRP)for each test sample. Highest prediction accuracies corresponded to WS-PLS-1 method with R2 values of 0.994, 0.982 and 0.999 for MONT, FEXO and CET, respectively. The best values of detection limit were also provided by WS-PLS-1 method which obtained to be 0.029, 0.049 and 0.054 mg/L for MONT, FEXO and CET, respectively. According to the results obtained, WS-PLS-1 method was shown to have the potential to be utilized as a promising tool in clinical and pharmaceutical applications.

Keywords

Main Subjects


[1] Ibrahim M.A., Amin E.F., Ibrahim S.A., Abdelzaher W.Y., Abdelrahman A.M., Montelukast and Irbesartan Ameliorate Metabolic and Hepatic Disorders in Fructose-Induced Metabolic Syndrome in Rats, European Journal of Pharmacology, 724(0): 204-210 (2014).

[2] Simpson K., Jarvis B., Fexofenadine, Drugs, 59(2):301-321 (2000).

[3] Samadi-Maybodi A., Nejad-Darzi S.K.H., Simultaneous Determination of Paracetamol, Phenylephrine Hydrochloride and Chlorpheniramine Maleate in Pharmaceutical Preparations Using Multivariate Calibration 1, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75(4):1270-1274 (2010).

[4] Ahmadi S.H., Tavakoli H., Amirzadeh M., Sangi M.R., Simultaneous Determination of Hydrochlorothiazide and Enalapril Maleate in Pharmaceutical Formulations Using Fourier Transform Infrared Spectrometry, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 33(4):59-68 (2014).

[5] Masoum S., Alishahi A. R., Farahmand H., Shekarchi M., Prieto N., Determination of Protein and Moisture in Fishmeal by Near-Infrared Reflectance Spectroscopy and Multivariate Regression Based on Partial Least Squares, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 31(3):51-59 (2012).

[6] Rouhollahi A., Tavakoli H., Nayebi S., Ghasemi J., Noroozi M., Hashemi M., Simultaneous Spectrophotometric Determination of Heavy Metal Ions Using Several Chemometrics Methods: Effect of Different Parameters of Savitzky-Golay and Direct Orthogonal Signal Correction Filters, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 26(2):41-51 (2007).

[7] Goicoechea H. C., Olivieri A. C., Enhanced Synchronous Spectrofluorometric Determination of Tetracycline in Blood Serum by Chemometric Analysis. Comparison of Partial Least-squares and Hybrid Linear Analysis Calibrations, Analytical Chemistry, 71(19):4361-4368 (1999).

[8] Shariati-Rad M., Irandoust M., Amin N., and Ahmadi F., Simultaneous Determination of Paracetamol, Dextromethorphan, Phenylephrine and Chlorpheniramine Using Partial Least Squares, Current Pharmaceutical Analysis, 9(2): 183-190 (2013).

[9] Martens H., Naes T., "Assessment, Validation and Choice of Calibration Method, Multivariate Calibration", Wiley: New York, 237-266 (1989).

[10] Khoshayand M. R., Abdollahi H., Shariatpanahi M., Saadatfard A., Mohammadi A., Simultaneous Spectrophotometric Determination of Paracetamol, Ibuprofen and Caffeine in Pharmaceuticals by Chemometric Methods, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 70(3):491-499 (2008).

[11] Khanmohammadi M., Karimi M.A., Ghasemi K., Jabbari M., and Garmarudi A.B., Quantitative Determination of Malathion in Pesticide by Modified Attenuated Total Reflectance-Fourier Transform Infrared Spectrometry Applying Genetic Algorithm Wavelength Selection Method, Talanta, 72(2): 620-625 (2007).

[12] Leardi R., Genetic Algorithms in Chemometrics and Chemistry: a Review, Journal of Chemometrics, 15(7):559-569 (2001).

[13] Fatemi S., Masoori M., and Bozorgmehry Boozarjomehry R., Application of Genetic Algorithm in Kinetic Modeling and Reaction Mechanism Studies, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 24(4):37-46 (2005).

[14] Sadi M. and Dabir B., Application of Genetic Algorithm to Determine Kinetic Parameters of Free Radical Polymerization of Vinyl Acetate by Multi-Objective Optimization Technique, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 26(4): 29-37 (2007).

[15] Marsili N.R., Sobrero M.S., Goicoechea H.C., Spectrophotometric Determination of Sorbic and Benzoic Acids in Fruit Juices by a Net Analyte Signal-Based Method with Selection of the Wavelength Range to Avoid Non-Modelled Interferences, Analytical and Bioanalytical Chemistry, 376(1):126-133 (2003).

[16] Mohagheghian E., Zafarian-Rigaki H., Motamedi-Ghahfarrokhi Y., Hemmati-Sarapardeh A., Using an Artificial Neural Network to Predict Carbon Dioxide Compressibility Factor at High Pressure and Temperature, Korean Journal of Chemical Engineering, 1-10 (2015).

[17] Ehsani M. R., Bateni H., Razi Parchikolaei G., Modeling of Oxidative Coupling of Methane over Mn/Na2WO4/SiO2 Catalyst Using Artificial Neural Network, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 32(3):107-114 (2013).

[18] Chamsaz M., Safavi A., Fadaee J., Simultaneous Kinetic-Spectrophotometric Determination of Carbidopa, Levodopa and Methyldopa in the Presence of Citrate with the Aid of Multivariate Calibration and Artificial Neural Networks, Analytica Chimica Acta, 603(2):140-146 (2007).

[19] Khoshayand M. R., Abdollahi H., Shariatpanahi M., Saadatfard A., Mohammadi A., Simultaneous Spectrophotometric Determination of Paracetamol, Ibuprofen and Caffeine in Pharmaceuticals by Chemometric Methods, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 70(3):491-499 (2008).

[20] Li B., He Y., Xu C., Simultaneous Determination of Three Organophosphorus Pesticides Residues in Vegetables Using Continuous-Flow Chemiluminescence with Artificial Neural Network Calibration, Talanta, 72(1):223-230 (2007).

[21] Ni Y., Huang C., Kokot S., Application of Multivariate Calibration and Artificial Neural Networks to Simultaneous Kinetic-Spectrophotometric Determination of Carbamate Pesticides, Chemometrics and Intelligent Laboratory Systems, 71(2):177-193 (2004).

[22] Li Q., Yao X., Chen X., Liu M., Zhang R., Zhang X., Hu Z., Application of Artificial Neural Networks for the Simultaneous Determination of a Mixture of Fluorescent Dyes by Synchronous Fluorescence, Analyst, 125(11):2049-2053 (2000).

[23] Olivieri A. C., Goicoechea H. C., Iñón F. A., MVC1: An Integrated MatLab Toolbox for First-Order Multivariate Calibration, Chemometrics and Intelligent Laboratory Systems, 73(2):189-197 (2004).

[24] Gholivand M. B., Shariati-Rad M., Karimian N., Torkashvand M., A Chemometrics Approach for Simultaneous Determination of Cyanazine and Propazine Based on a Carbon Paste Electrode Modified by a Molecularly Imprinted Polymer, Analyst, 137(5):1190-1198 (2012).

[25] Shariati‐Rad M., Hasani M., Selection of Individual Variables Versus Intervals of Variables in PLSR, Journal of Chemometrics, 24(2):45-56 (2010).

[26] Shariati-Rad M., Irandoust M., Amin N., Shamsipur M., Solving Matrix Effect, Spectral Interferences and Nonlinearity by Generalized Standard Addition Method Coupled with Radial Basis Functions-Partial Least Squares: Application to Simultaneous Determination of Drugs in Urine, Chemometrics and Intelligent Laboratory Systems, 120(77-83 (2013).

[27] Tarjomannejad A., Prediction of the Liquid Vapor Pressure Using the Artificial Neural Network-Group Contribution Method, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 34(4):97-111 (2015).

[28] Tymvios F. S., Michaelides S. C., Skouteli C. S., “Estimation of Surface Solar Radiation with Artificial Neural Networks. In Modeling Solar Radiation at the Earth’s Surface” Springer Berlin Heidelberg (2008).

[29] Thomas E. V., Haaland D. M., Comparison of Multivariate Calibration Methods for Quantitative Spectral Analysis, Analytical Chemistry, 62(10):1091-1099 (1990).

[30] Ragno G., Ioele G., Risoli A., Multivariate Calibration Techniques Applied to the Spectrophotometric Analysis of one-to-four Component Systems, Analytica Chimica Acta, 512(1):173-180 (2004).

[31] Marsili N. R., Sobrero M. S., Goicoechea H. C., Spectrophotometric Determination of Sorbic and Benzoic Acids in Fruit Juices by a Net Analyte Signal-Based Method with Selection of the Wavelength Range to Avoid Non-Modelled Interferences, Analytical and Bioanalytical Chemistry, 376(1):126-133 (2003).

[32] Lorber A., Faber K., Kowalski B. R., Net Analyte Signal Calculation in Multivariate Calibration, Analytical Chemistry, 69(8):1620-1626 (1997).

[33] Booksh K. S., Kowalski B. R., Theory of Analytical Chemistry, Analytical Chemistry, 66(15):782A-791A (1994).

[34] Goicoechea H. C., Olivieri A. C., Determination of Bromhexine in Cough–Cold Syrups by Absorption Spectrophotometry and Multivariate Calibration Using Partial Least-Squares and Hybrid Linear Analyses. Application of a Novel Method of Wavelength Selection, Talanta, 49(4):793-800 (1999).

[35] C. Goicoechea H., C. Goicoechea H., C. Olivieri A., Wavelength Selection by Net Analyte Signals Calculated with Multivariate Factor-Based Hybrid Linear Analysis (HLA). A Theoretical and Experimental Comparison with Partial Least-Squares (PLS), Analyst, 124(5):725-731 (1999).

[36] Skibsted E.T.S., Boelens H.F.M., Westerhuis J.A., Witte D.T., Smilde A.K., New Indicator for Optimal Preprocessing and Wavelength Selection of Near-Infrared Spectra, Applied Spectroscopy, 58(3): 264-271 (2004).

[37] Vekaria H., Limbasiya V., Patel P., Development and Validation of RP-HPLC Method for Simultaneous Estimation of Montelukast Sodium and Fexofenadine Hydrochloride in Combined Dosage Form, Journal of Pharmacy Research, 6(1):134-139 (2013).

[38] Roman J., Breier A. R., Steppe M., Stability Indicating LC Method to Determination of Sodium Montelukast in Pharmaceutical Dosage form and Its Photodegradation Kinetics, Journal of Chromatographic Science, 49(7):540-546 (2011).

[39] Alsarra I., Al-Omar M., Gadkariem E., Belal F., Voltammetric Determination of Montelukast Sodium in Dosage Forms and Human Plasma, Il Farmaco, 60(6):563-567 (2005).

[40] Yıldız G., Aydoğmuş Z., Kauffmann J. M., Differential Pulse Voltammetric Determination of Montelukast in Tablets and Human Plasma by Using Chitosan Modified Carbon Paste Electrode, Electroanalysis, 25(7):1796-1802 (2013).

[41] Arayne M. S., Sultana N., Hussain F., Spectrophotometric Method for Quantitative Determination of Montelukast in Bulk, Pharmaceutical Formulations and Human Serum, Journal of Analytical Chemistry, 64(7):690-695 (2009).

[42] Radhakrishna T., Reddy G. O., Simultaneous Determination of Fexofenadine and Its Related Compounds by HPLC, Journal of Pharmaceutical and Biomedical Analysis, 29(4):681-690 (2002).

[43] Zafar F., Shoaib M. H., Yousuf R. I., Development of RP-HPLC Method for Fexofenadine Determination in Tablet Formulations and Development of Dissolution Method, Pakistan Journal of Pharmacology, 28:43-49 (2011).

[44] El-Hay S. S. A., Colyer C. L., Hassan W. S., Shalaby A., Spectrofluorimetric Determination of Etodolac, Moxepril HCl and Fexofenadine HCl Using Europium Sensitized Fluorescence in Bulk and Pharmaceutical Preparations, Journal of Fluorescence, 22(1):247-252 (2012).

[45] Karakuş S., Küçükgüzel İ., Küçükgüzel Ş. G., Development and Validation of a Rapid RP-HPLC Method for the Determination of Cetirizine or Fexofenadine with Pseudoephedrine in Binary Pharmaceutical Dosage Forms, Journal of Pharmaceutical and Biomedical Analysis, 46(2):295-302 (2008).

[46] El Walily A., Korany M., El Gindy A., Bedair M., Spectrophotometric and high Performance Liquid Chromatographic Determination of Cetirizine Dihydrochloride in Pharmaceutical Tablets, Journal of Pharmaceutical and Biomedical Analysis, 17(3):435-442 (1998).

[47] Javid F. S., Shafaat A., Zarghi A., Determination of Cetirizine and Its Impurities in Bulk and Tablet Formulation Using a Validated Capillary Zone Electrophoretic Method, Journal of Analytical Chemistry, 69(5):442-447 (2014).

[48] Ahmed S., Atia N. N., Simultaneous Determination of Montelukast as Sparing Therapy with Some Inhaled Corticosteroids in Plasma of Asthmatic Patients, Journal of Pharmaceutical and Biomedical Analysis, 74(250-256 (2013).

[49] Kitchen C.J., Wang A.Q., Musson D.G., Yang A.Y., Fisher A.L., A Semi-Automated 96-Well Protein Precipitation Method for the Determination of Montelukast in Human Plasma Using High Performance Liquid Chromatography/Fluorescence Detection, Journal of Pharmaceutical and Biomedical Analysis, 31(4):647-654 (2003).

[50] Ranjan O.P., Nayak U.Y., Reddy M.S., Dengale S.J., Musmade P.B., Udupa N., Development and Validation of RP-HPLC Method with Ultraviolet Detection for Estimation of Montelukast in Rabbit Plasma: Application to Preclinical Pharmacokinetics, Journal of Young Pharmacists, 5(4):133-138 (2013).

[51] Heli H., Sattarahmady N., Vais R. D., Karimian K., Nickel Hydroxide Nanopetals: One-pot Green Synthesis, Characterization and Application for the Electrocatalytic Oxidation and Sensitive Detection of Montelukast, Sensors and Actuators B: Chemical, 196:631-639 (2014).

[52] Arayne M. S., Sultana N., Shehnaz H., Haider A., RP-HPLC Method for the Quantitative Determination of Fexofenadine Hydrochloride in Coated Tablets and Human Serum, Medicinal Chemistry Research, 20(1):55-61 (2011).

[53] Miura M., Uno T., Tateishi T., Suzuki T., Determination of Fexofenadine Enantiomers in Human Plasma with High-Performance Liquid Chromatography, Journal of Pharmaceutical and Biomedical Analysis, 43(2):741-745 (2007).

[54] Uno T., Yasui-Furukori N., Takahata T., Sugawara K., Tateishi T., Liquid Chromatographic Determination of Fexofenadine in Human Plasma with Fluorescence Detection, Journal of Pharmaceutical and Biomedical Analysis, 35(4):937-942 (2004).

[55] Alothman Z.A., Bukhari N., Haider S., Wabaidur S.M., Alwarthan A. A., Spectrofluorimetric Determination of Fexofenadine Hydrochloride in Pharmaceutical Preparation Using Silver Nanoparticles, Arabian Journal of Chemistry, 3(4):251-255 (2010).

[56] Hadad G.M., Emara S., Mahmoud W.M., Development and Validation of a Stability-Indicating RP-HPLC Method for the Determination of Paracetamol with Dantrolene or/and Cetirizine and Pseudoephedrine in Two Pharmaceutical Dosage Forms, Talanta, 79(5):1360-1367 (2009).

[57] Jaber A., Al Sherife H., Al Omari M., Badwan A., Determination of Cetirizine Dihydrochloride, Related Impurities and Preservatives in Oral Solution and Tablet Dosage Forms Using HPLC, Journal of Pharmaceutical and Biomedical Analysis, 36(2):341-350 (2004).

[58] Rosseel M., Lefebvre R., Determination of Cetirizine in Human Urine by High-Performance Liquid Chromatography, Journal of Chromatography B: Biomedical Sciences and Applications, 565(1):504-510 (1991).

[59] Ma M., Feng F., Sheng Y., Cui S., Liu H., Development and Evaluation of an Efficient HPLC/MS/MS Method for the Simultaneous Determination of Pseudoephedrine and Cetirizine in Human Plasma: Application to Phase-I Pharmacokinetic Study, Journal of Chromatography B, 846(1):105-111 (2007).

[60] Patil R.H., Hegde R.N., Nandibewoor S. T., Electro-Oxidation and Determination of Antihistamine Drug, Cetirizine Dihydrochloride at Glassy Carbon Electrode Modified with Multi-Walled Carbon Nanotubes, Colloids and Surfaces B: Biointerfaces, 83(1):133-138 (2011).