Synthesis and Characterization of Co-Mn Nanocatalyst Prepared by Thermal Decomposition for Fischer-Tropsch Reaction

Document Type : Research Article

Authors

1 Department of Chemistry, Payame Noor University, P.O. Box 19395-3697 Tehran, I.R. IRAN

2 Department of Chemical Engineering, Ilam University, P.O. Box 69315-516 Ilam, I.R. IRAN

Abstract

Nano-structure of Co–Mn spinel oxide was prepared by thermal decomposition method using [Co(NH3)4CO3]MnO4 as the precursor. The properties of the synthesized material were characterized by X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Transmission Electron Microscopy (TEM), surface area measurements, Energy-Dispersive X-ray (EDX) spectroscopy analysis, UV-Vis spectrophotometer (UV-Vis), Fourier Transform InfraRed (FT-IR), Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) analyses. The results show that Co–Mn spinel oxide is spherical in shape and possess crystallite size is about 12 nm. The catalytic activity and product selectivity were also investigated, in a micro-reactor (Fischer–Tropsch Synthesis (FTS) reaction) and the results compared with conventional Co-Mn oxide catalyst. The catalyst performance increased as the particle size of the catalyst decreased. Moreover, the olefin to paraffin ratios was increased, compared to the conventional catalyst.

Keywords

Main Subjects


[1] Tihay F., Pourroy G., Richard-Plouet M., Roger AC., Kiennemann A., Effect of Fischer–Tropsch Synthesis on the Microstructure of Fe–Co-Based Metal/Spinel Composite Materials, Appl. Catal. A Gen., 206: 29-42 (2001)
[2] Duvenhage D.J., Coville N., Fe:CoTiO2 Bimetallic Catalysts for the Fischer-Tropsch Reaction I. Characterization and Reactor Studies, J. Appl. Catal. A Gen. 153: 43-67 (1997)
[3] Cabet C., Roger A.C., Kiennemann A., Läkamp S., Pourroy G., Synthesis of New Fe–Co Based Metal/Oxide Composite Materials: Application to the Fischer–Tropsch Synthesis, J. Catal., 173: 64-73 (1998)
[5] Tihay F., Roger A.C., Kiennemann A., Pourroy G., Fe–Co Based Metal/Spinel to Produce Light Olefins from Syngas, Catal. Today, 58: 263-269 (2000)
[6] Reshetenko T.V., Avdeeva L.B., Khassin A.A., Kustova G.N., Ushakov V.A., Moroz E.M., Shmakov A.N., Coprecipitated Iron-Containing Catalysts (Fe-Al2O3, Fe-Co-Al2O3, Fe-Ni-Al2O3) for Methane Decomposition at Moderate Temperatures: I. Genesis of Calcined and Reduced Catalysts, Appl. Catal. A Gen., 268: 127-138 (2004)
[7] de la Pen’a O’Shea V.A., Menéndez N.N., Tornero J.D., Fierro J.L.G., Unusually High Selectivity to C2+ Alcohols on Bimetallic CoFe Catalysts During CO Hydrogenation, Catal. Lett., 88: 123-128 (2003)
[8]. Mirzaei A.A., Habibpour R., Kashi E., Preparation and Optimization of Mixed Iron Cobalt Oxide Catalysts for Conversion of Synthesis Gas to Light Olefins, Appl. Catal. A Gen., 296: 222-231 (2005).
[9] van der Laan G.P., Beenackers A.A.C.M., Kinetics and Selectivity of the Fischer-Tropsch Synthesis: A Literature Review, Catal. Rev. Sci. Eng., 41: 255-318 (1999)
[10] González-Cortés S.L., Rodulfo-Baechler S.M.A., Oliveros A., Orozco J., Fontal B., Mora A.J., Delgado G., Synthesis of Light Alkenes on Manganese Promoted Iron and Iron-Cobalt Fischer-Tropsch Catalysts, React. Kinet. Catal. Lett., 75: 3-12 (2002)
[11] Keyser M.J., Everson R.C., Espinoza R.L., Fischer–Tropsch Studies with Cobalt–Manganese Oxide Catalysts: Synthesis Performance in a Fixed bed Reactor, Appl. Catal. A Gen., 171: 99-107 (1998)
[13] Barrault J., Forquy C., Menezo J.C., Maurel R., Selective Hydrocondensation of CO to Light Olefins with Alumina-Supported Iron Catalysts, React. Kinet. Catal. Lett., 15: 153-158 (1980)
[15] Mansouri M., Atashi H., Fischer-Tropsch Synthesis over Potassium-Promoted Co-Fe/SiO2 Catalyst, Indian J. Chem. Tech., 23: 453-461 (2016)
[16] Feyzi M., Hassankhani A., TiO2 Supported Cobalt-Manganese Nano Catalysts for Light Olefins Production from Syngas, J. Energy Chem., 22: 645-652 (2013)
[17] Park J.Y., Lee Y.J., Karandikar P.R., Jun K.W., Ha K.S., Park H.G., Fischer–Tropsch Catalysts Deposited with Size-Controlled Co3O4 Nanocrystals: Effect of Co Particle Size on Catalytic Activity and Stability, Appl. Catal. A Gen., 411–412: 15-23 (2012).
[18] Zeng B., Hou B., Jia L., Li D., Sun Y., Fischer–Tropsch Synthesis over Different Structured Catalysts: The Effect of Silica Coating onto Nanoparticles, J. Mol. Catal. A Chem., 379:263-268 (2013).
[20] Li T., Wang H., Yang Y., Xiang H., Li Y., Study on an Iron–Nickel bimetallic Fischer–Tropsch Synthesis Catalyst, Fuel Process. Tech., 118: 117-124 (2014)
[21] Farzad S., Haghtalab A., Rashidi A., Comprehensive Study of Nanostructured Supports with High Surface Area for Fischer-Tropsch Synthesis, J. Energy Chem., 22: 573-581 (2013).
[23] He T., Chen D., Jiao X., Wang Y., Duan Y., Solubility-Controlled Synthesis of High-Quality Co3O4 Nanocrystals, Chem. Mater., 17: 4023-4030 (2005)
[24] Tavakoli H., Mamoory R.S., Zarei A.R., Inverse Co-Precipitation Synthesis of Copper Chromite Nanoparticles, Iran. J. Chem. Chem. Eng. (IJCCE), 35: 51-55 (2016)
[26] Li D., Zhong G-Q., Zang Q., Solid–Solid Synthesis, Crystal Structure and Thermal Decomposition of Copper(II) Complex of 2-Picolinic Acid, Iran. J. Chem. Chem. Eng. (IJCCE), 35: 21-29 (2016)
[27] Rad A.R.S., Khoshgouei M.B., Rezvani A.R., Water Gas Shift Reaction over Zn–Ni/SiO2 Catalyst Prepared from Zn(H2O)6]2[Ni(NCS)6]·H2O/SiO2 Precursor, J. Mol. Catal. A Chem., 344: 11-17 (2011)
[28] Barrett E.P., Joyner L.G., Halenda P.P., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Ntrogen Isotherms, J. Am. Chem. Soc., 73: 373-380 (1951)
[29] Mansouri M., Atashi H., Farshchi Tabrizi F., Mirzaei A.A., Mansouri G., Kinetics Studies of Nano-Structured Cobalt–Manganese Oxide Catalysts in Fischer–Tropsch Synthesis, J. Ind. Eng. Chem., 19: 1177–1183(2013)
[30] Mansouri, M. Atashi, H. Khalilipour, M.M. Setareshenas, N. Shahraki, F., Rate Expression of Fischer-Tropsch Synthesis Over Co–Mn Nanocatalyst by Response Surface Methodology (RSM), J. Korean Chem. Soc., 57: 769-777 (2013)
[31] Kaviyarasu K., Raja A., Devarajan P.A., Structural Elucidation and Spectral Characterizations of Co3O4 Nanoflakes, Spectrochim. Acta. A Mol. Biomol. Spectrosc., 114: 586-591 (2013)
[32] Kótai L., Argay G., Holly S., Szentmihályi K., Keszler Á., Pukánszky B., Anorg Z., Study on the Existence of Hydrogen Bonds in Ammonium Permanganate, Z. Anorg. Allg. Chem., 627: 114-118 (2001)
[33] Zhang Y.C., Qiao T., Hu X.Y., Hu X.Y., Zhou W.D., Simple Hydrothermal Preparation of γ-MnOOH Nanowires and Their Low-Temperature Thermal Conversion to β-MnO2 Nanowires, J. Cryst. Growth., 280: 652-657 (2005)
[34] Rohani Bastami T., Entezari M.H., A Novel Approach for the Synthesis of Superparamagnetic Mn3O4 Nanocrystals by Ultrasonic Bath, Ultrason. Sonochem., 19: 560-569 (2012)
[35] Salavati-Niasari M., Khansari A., Davar F., Synthesis and Characterization of Cobalt Oxide Nanoparticles by Thermal Treatment Process, Inorg. Chim. Acta., 362: 4937-4942 (2009)
[36] Xu R., Zeng H.C., Synthesis of Co3O4 Nanocubes and Their Close- and Non-Close-Packed Organizations, Langmuir, 20: 9780-9790 (2004)
[37] Dry M.E., In “The Fischer–Tropsch Synthesis, Catalysis: Science and Technology”, Anderson J.R., Boudart M., (eds.) (Springer-Verlag: NY) pp.160-255 (1981)