Kinetic Study and Thermal Decomposition Behavior of Magnesium-Sodium Nitrate Based on Hydroxyl-Terminated Polybutadiene

Document Type: Research Article

Authors

Department of Chemistry and Chemical Engineering, Faculty of Chemistry, Malek-Ashtar University of Technology (MUT), Tehran, I.R. IRAN

Abstract

This paper has been utilizing the simultaneous ThermoGravimetric analysis and Differential Scanning Calorimetry (TG–DSC) to investigate the thermal decomposition of magnesium-sodium nitrate pyrotechnic composition based HTPB resin. The thermal behaviors of different samples with various fuel-oxidizer ratio contents were determined. Decomposition kinetic was investigated by evaluating the influence of DSC heating rate (4, 7, 10, 13 oC/min) on the behavior of the illumination flares. The results as expected showed that the decomposition temperature of the illumination flares decreases with the increase in the DSC heating rate, while thermal decomposition of the sample followed the first-order law. Furthermore, Magnesium-sodium nitrate illumination flares with HTPB resin have been studied for luminous efficiency by varying fuel/oxidizer ratio. The kinetic and thermodynamic parameters of the illumination flares decomposition under ambient pressure were obtained from the resulted DSC data via non-isothermal methods proposed by ASTM E698 and Flynn-Wall-Ozawa. Also, the critical temperature of ignition temperature was estimated at about 455 oC.

Keywords

Main Subjects


[1] Palaiah R., Joshi P., Deo S., Jawale D., Valiv M., Somayajulu M., Luminous Efficient Compositions Based on Epoxy Resin, Def. Sci. J. 56(3): 339-343 (2006).

[2] Koch E.C., 2006–2008 Annual Review on Aerial Infrared Decoy Flares, Prop. Explos. Pyrotech., 34(1): 6-12 (2009).

[3] Göçmez A., Yilmaz G.A., Peke F., Özkar S., Development of MTV Compositions as Igniter for HTPB/AP Based Composite Propellants, Prop. Explos. Pyrotech. 24(2): 65-69 (1999).

[4] Toader G., Rotariu T., Rusen E., Tartiere J., Esanu S., Zecheru T., New Solvent-free Polyurea Binder for Plastic Pyrotechnic Compositions, MAT. PLAS., 54(1): 22-28 (2017).

[5] Barros L.D., Pinheiro A.M., Câmara J.E., Iha K., Qualification of Magnesium/Teflon/Viton Pyrotechnic Composition Used in Rocket Motors Ignition System, J. Aerosp. Technol. Manag., 8(2): 130-136 (2016).

[6] Abusaidi H., Ghorbani M., Ghaieni H.R., Development of Composite Solid Propellant Based on Nitro Functionalized Hydroxyl‐Terminated Polybutadiene, Prop. Explos. Pyrotech., 42:1-6 (2017).

[7] Badgujar D., Talawar M., Asthana S., Mahulikar P., Advances in Science and Technology of Modern Energetic Materials: an Overview, J. Hazard. Mater., 151(2): 289-305 (2008).

[8] Agrawal J.P., Some New High Energy Materials and Their Formulations for Specialized Applications, Prop. Explos. Pyrotech. 30(5): 316-328 (2005).

[9] Agrawal J.P., Recent Trends in High-Energy Materials, Prog. Energ. Combust. 24(1): 1-30 (1998).

[10] Millar R., Colclough M., Desaii H., Gloding P., Honey P., Paul N., Novel Syntheses of Energetic Materials Using Dinitrogen Pentoxide, Chem. Inform. 27(40): 104-121 (1996).

[11] Millar R., Colclough M., Gloding P., Honey P., Paul N., Sanderson A., New Synthesis Routes for Energetic Materials Using Dinitrogen Pentoxide, Phys. Eng. Sci. 339(15): 305-319 (1992).

[13] Sunitha M., Reghunadhan Nair C., Krishnan K., Ninan K., Kinetics of Alder-ene Reaction of Tris (2-allylphenoxy) Triphenoxycyclotriphosphazene and bismaleimides—A DSC Study, Thermochim. Acta. 374(2): 159-169 (2001).

[14] Yi J-h., Zhao F-q., Xu S-y., Zhang L-y., Gao H-x., Hu R-z., Effects of Pressure and TEGDN Content on Decomposition Reaction Mechanism and Kinetics of DB Gun Propellant Containing the Mixed Ester of TEGDN and NG, J. Hazard. Mater. 165(1): 853-859 (2009).

[15] Tonglai Z., Rongzu H., Yi X., Fuping L., The Estimation of Critical Temperatures of Thermal Explosion for Energetic Materials Using Non-Isothermal DSC, Thermochim. Acta., 244: 171-176 (1994).

[16] Salla J., Morancho J., Cadenato A., Ramis X., Non-Isothermal Degradation of a Thermoset Powder Coating in Inert and Oxidant Atmospheres, J. Therm. Anal. Calorim. 72(2): 719-728 (2003).

[17] Ma H., Yan B., Li Z., Guan Y., Song J., Xu K., Preparation, Non-Isothermal Decomposition Kinetics, Heat Capacity and Adiabatic Time-to-Explosion of NTO·DNAZ, J. Hazard. Mater. 169(1):1068-1073 (2009).

[18] Pourmortazavi S., Hosseini S., Rahimi-Nasrabadi M., Hajimirsadeghi S., Momenia H., Effect of Nitrate Content on Thermal Decomposition of Nitrocellulose, J. Hazard. Mater. 162(2): 1141-1144 (2009).

[19] Tompa A.S., Boswell R.F., Thermal Stability of a Plastic Bonded Explosive, Thermochim. Acta., 357: 169-175 (2000).

[20] Pickard J.M., Critical Ignition Temperature, Thermochim. Acta. 392: 37-40 (2002).

[21] Tonglai Z., Rongzu H., Yi X., Fuping L., The Estimation of Critical Temperatures of Thermal Explosion for Energetic Materials Using Non-Isothermal DSC, Thermochim, Acta. 244: 171-176 (1994).

[22] Abusaidi H., Ghaieni H.R., Thermal Analysis and Kinetic Decomposition of Nitro-Functionalized Hydroxyl-Terminated Polybutadiene Bonded Explosive, J. Therm. Anal. Calorim. 127(3):2301–2306 (2017).

[23] Abusaidi H., Ghaieni H.R., Pourmortazavi S.M., Motamed-Shariati S.H., Effect of Nitro Content on Thermal Stability and Decomposition Kinetics of Nitro-HTPB, J. Therm. Anal. Calorim. 124(2): 935-941 (2016).