• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 37 (2018)
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 36 (2017)
Volume Volume 35 (2016)
Volume Volume 34 (2015)
Volume Volume 33 (2014)
Volume Volume 32 (2013)
Volume Volume 31 (2012)
Volume Volume 30 (2011)
Volume Volume 29 (2010)
Volume Volume 28 (2009)
Volume Volume 27 (2008)
Volume Volume 26 (2007)
Volume Volume 25 (2006)
Volume Volume 24 (2005)
Volume Volume 23 (2004)
Volume Volume 22 (2003)
Volume Volume 21 (2002)
Volume Volume 20 (2001)
Volume Volume 19 (2000)
Volume Volume 18 (1999)
Volume Volume 17 (1998)
Volume Volume 16 (1997)
Volume Volume 15 (1996)
Volume Volume 14 (1995)
Volume Volume 13 (1994)
Volume Volume 12 (1993)
Volume Volume 11 (1992)
Volume Volume 10 (1991)
Volume Volume 9 (1990)
Volume Volume 8 (1989)
Volume Volume 7 (1988)
Volume Volume 6 (1987)
Nakhaei, A., Davoodnia, A., Yadegarian, S. (2018). An Efficient Green Approach for the Synthesis of Fluoroquinolones Using Nano Zirconia Sulfuric Acid as Highly Efficient Recyclable Catalyst in two Forms of Water. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37(3), 33-42.
Ahmad Nakhaei; Abolghasem Davoodnia; Sepideh Yadegarian. "An Efficient Green Approach for the Synthesis of Fluoroquinolones Using Nano Zirconia Sulfuric Acid as Highly Efficient Recyclable Catalyst in two Forms of Water". Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37, 3, 2018, 33-42.
Nakhaei, A., Davoodnia, A., Yadegarian, S. (2018). 'An Efficient Green Approach for the Synthesis of Fluoroquinolones Using Nano Zirconia Sulfuric Acid as Highly Efficient Recyclable Catalyst in two Forms of Water', Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37(3), pp. 33-42.
Nakhaei, A., Davoodnia, A., Yadegarian, S. An Efficient Green Approach for the Synthesis of Fluoroquinolones Using Nano Zirconia Sulfuric Acid as Highly Efficient Recyclable Catalyst in two Forms of Water. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 2018; 37(3): 33-42.

An Efficient Green Approach for the Synthesis of Fluoroquinolones Using Nano Zirconia Sulfuric Acid as Highly Efficient Recyclable Catalyst in two Forms of Water

Article 4, Volume 37, Issue 3 - Serial Number 89, May and June 2018, Page 33-42  XML PDF (610.3 K)
Document Type: Research Article
Authors
Ahmad Nakhaei email 1; Abolghasem Davoodniaorcid 2; Sepideh Yadegarian1
1Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, I. R. IRAN
2Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, I. R. IRAN
Abstract
Various antibacterial fluoroquinolone compounds were prepared by the direct amination of 7-halo-6- fluoroquinolone-3-carboxylic acids with a variety of piperazine derivatives and (4aR,7aR)-octahydro-1H-pyrrolo[3,4-b] pyridine using Zirconia Sulfuric Acid (ZrSA) nanoparticle, as a catalyst in the presence of ordinary or magnetized water upon reflux condition. The results showed that ZrSA exhibited high catalytic activity towards the synthesis of fluoroquinolone derivatives in two forms of water. However, the magnetized water showed better results. Furthermore, the catalyst was recyclable and could be reused at least three times without any discernible loss in its catalytic activity. Overall, this new catalytic method for the synthesis of fluoroquinolone derivatives provides rapid access to the desired compounds in refluxing water following a simple work‐up procedure and avoids the use of harmful organic solvents. This method, therefore, represents a significant improvement over the methods currently available for the synthesis of fluoroquinolone derivatives.
Keywords
Fluoroquinolone derivatives; Antibacterial; Fast and green synthesis; Zirconia sulfuric acid (ZrSA); Ordinary or magnetized water
Main Subjects
Catalysts, Kinetics, Reactor
References
[1] Fernandes P.B., Shipkowitz N., Bower R.R., Jarvis K.P., Weisz J., Chu D.T., In-Vitro and in-Vivo Potency of Five New Fluoroquinolones Against Anaerobic Bacteria, J. Antimicrob. Chemother., 18(6): 693–701 (1986).

[2] Stein G.E., Goldstein E.J., Fluoroquinolones and Anaerobes, Clin. Infect. Dis., 42(11): 1598–1607 (2006).

[3] Chen Y.L., Fang K.C., Sheu J.Y., Hsu S.L., Tzeng C.C., Synthesis and Antibacterial Evaluation of Certain Quinolone Derivatives, J. Med. Chem., 44(14): 2374–2377 (2001).

[4] Fujimaki K., Noumi T., Saikawa I., Inoue M., Mitsuhashi S., In Vitro and in Vivo Antibacterial Activities of T-3262, A New Fluoroquinolone, Antimicrob. Agents Chemother., 32(6): 827–833 (1988).

[5] Golet E.M., Strehler A., Alder A.C., Giger W., Determination of Fluoroquinolone Antibacterial Agents in Sewage Sludge and Sludge-Treated Soil Using Accelerated Solvent Extraction Followed by Solid-Phase Extraction, Anal. Chem., 74(21): 5455–5462 (2002).

[6] O'Donnell J.A., Gelone S.P., Fluoroquinolones, Infect. Dis. Clin. North Am., 14(2): 489–513 (2000).

[7] Zhanel G.G., Walkty A., Vercaigne L., Karlowsky J.A., Embil J., Gin A.S., Hoban D.J., The New Fluoroquinolones: A Critical Review, Can. J. Infect. Dis. Med. Microbiol., 10(3): 207–238 (1999).

[8] Llorente B., Leclerc F., Cedergren R., Using SAR and QSAR Analysis to Model the Activity and Structure of the Quinolone—DNA Complex, Bioorg. Med. Chem., 4(1): 61–71 (1996).

[9] Wentland M.P., Lesher G.Y., Reuman M., Gruett M.D., Singh B., Aldous S.C., Dorff P.H., Rake J.B., Coughlin S.A., Mammalian Topoisomerase II Inhibitory Activity of 1-cyclopropyl-6, 8-difluoro-1, 4-dihydro-7-(2, 6-dimethyl-4-pyridinyl)-4-oxo-3-Quinolinecarboxylic Acid and Related Derivatives, J. Med. Chem., 36(19): 2801–2809 (1993).

[10] Elsea S.H., Osheroff N., Nitiss J.L., Cytotoxicity of Quinolones Toward Eukaryotic Cells. Identification of Topoisomerase II as the Primary Cellular Target for the Quinolone CP-115,953 in Yeast, J. Biol. Chem., 267(19): 13150–13153 (1992).

[11] Oh Y.S., Lee C.W., Chung Y.H., Yoon S.J., Cho S.H., Syntheses of New Pyridonecarboxylic Acid Derivatives Containing 3‐, 5‐or 6‐quinolyl Substituents at N‐1 and Their Anti‐HIV‐RT Activities, J. Heterocycl. Chem., 35(3): 541–550 (1998).

[12] Karlowsky J.A., Adam H.J., Desjardins M., Lagacé-Wiens P.R., Hoban D.J., Zhanel G.G., Baxter M.R., Nichol K.A., Walkty A., Canadian Antimicrobial Resistance Alliance (CARA, 2013. Changes in Fluoroquinolone Resistance over 5 Years (CANWARD 2007–11) in Bacterial Pathogens Isolated in Canadian Hospitals, J. Antimicrob. Chemother., 68: i39–i46 (2013).

[13] Gootz T.D., Brighty K.E., Fluoroquinolone Antibacterials: SAR, Mechanism of Action, Resistance, and Clinical Aspects, Med. Res. Rev., 16(5): 433–486 (1996).

[14] Aubry A., Pan X.S., Fisher L.M., Jarlier V., Cambau E., Mycobacterium Tuberculosis DNA Gyrase: Interaction with Quinolones and Correlation with Antimycobacterial Drug Activity, Antimicrob. Agents Chemother., 48(4): 1281–1288 (2004).

[15] Mitscher L.A., Bacterial Topoisomerase Inhibitors: Quinolone and Pyridone Antibacterial Agents, Chem. Rev., 105(2): 559–592 (2005).

[16] Sriram D., Aubry A., Yogeeswari P., Fisher L.M., Gatifloxacin Derivatives: Synthesis, Antimycobacterial Activities, and Inhibition of Mycobacterium Tuberculosis DNA Gyrase, Bioorg. Med. Chem. Lett., 16(11): 2982–2985 (2006).

[17] Dubar F., Anquetin G., Pradines B., Dive D., Khalife J., Biot C., Enhancement of the Antimalarial Activity of Ciprofloxacin Using a Double Prodrug/Bioorganometallic Approach, J. Med. Chem., 52(24): 7954–7957 (2009).

[18] Shindikar A.V., Viswanathan C.L., Novel Fluoroquinolones: Design, Synthesis, and in Vivo Activity in Mice Against Mycobacterium Tuberculosis H 37 Rv, Bioorg. Med. Chem. Lett., 15(7): 1803–1806 (2005).

[19] Reddy P.G., Baskaran S., Microwave Assisted Amination of Quinolone Carboxylic Acids: an Expeditious Synthesis of Fluoroquinolone Antibacterials, Tetrahedron Lett., 42(38): 6775–6777 (2001).

[20] Kawakami K., Namba K., Tanaka M., Matsuhashi N., Sato K., Takemura M., Antimycobacterial Activities of Novel Levofloxacin Analogues, Antimicrob. Agents Chemother., 44(8): 2126–2129 (2000).

[21] Fisher L.M., Lawrence J.M., Josty I.C., Hopewell R., Margerrison E.E., Cullen M.E., Ciprofloxacin and the Fluoroquinolones: New Concepts on the Mechanism of Action and Resistance, Am. J. Med., 87(5): S2-S8 (1989).

[22] Grohe K., Heitzer H., Cycloaracylation of Enamines. 1. Synthesis of 4-quinolone-3-carboxylic Acids, Liebigs Ann. Chem., 1: 29–37 (1987).

[23] Petersen U., Grohe K., Kuck K.H., Microbicidal Agents Based on Quinolonecarboxylic Acid, U.S. Patent: 4563459 (1986).

[24] Petersen U., Schrock W., Habich D., Krebs A., Schenke T., Philipps T., Grohe K., Endermann R., Bremm K.D., Metzger K.G., Quinolonecarboxylic Acids, U.S. Patent: 5480879 (1996).

[25] Lee T.A., Khoo J.H., Song S.H., Process for Preparing Levofloxacin or Its Hydrate, Patent: WO2006009374 (2006).

[26] Hayakawa I., Atarashi S., Imamura M., Yokohama S., Higashihashi N., Sakano K., Ohshima M., Optically Active Pyridobenzoxazine Derivatives and Intermediates Thereof, U.S. Patent: 4985557 (1991).

[27] Hayakawa I., Hiramitsu T., Tanaka Y., Synthesis and Antibacterial Activities of Substituted 7-oxo-2, 3-dihydro-7H-pyrido [1, 2, 3-de][1, 4] Benzoxazine-6-carboxylic Acids, Chem. Pharm. Bull., 32(12): 4907–4913 (1984).

[28] “Global and Alliance for TB Drug Development Handbook of Anti-Tuberculosis Agents”, "Moxifloxacin". Tuberculosis, 88(2): 127–131(2008).

[29] Guruswamy B., Arul R., Synthesis, Characterization, Antimicrobial Activity of Novel N-Substituted β-Hydroxy Amines and β-Hydroxy Ethers Contained Chiral Benzoxazine Fluoroquinolones, Lett. Drug Des. Discov., 10(1): 86–93 (2013).

[30] Mohammadi Ziaran, G., Badiei A.R., Khaniania Y., Haddadpour M., One Pot Synthesis of Polyhydroquinolines Catalyzed by Sulfonic Acid Functionalized SBA-15 as a New Nanoporous Acid Catalyst under Solvent Free Conditions, Iran. J. Chem. Chem. Eng. (IJCCE), 29(2): 1–10 (2010).

[31] Davoodnia A., Yadegarian S., Nakhaei A., Tavakoli-Hoseini N., A Comparative Study of TiO2, Al2O3, and Fe3O4 Nanoparticles as Reusable Heterogeneous Catalysts in the Synthesis of Tetrahydrobenzo[a]xanthene-11-ones, Russ. J. Gen. Chem., 86(12): 2849–2854 (2016).

[32] Nakhaei A., Davoodnia A., Yadegarian S., Catalytic Activity of (NH4)42[Movi 72Mov 60O372(CH3COO)30(H2O)72]AS Highly Efficient Recyclable Catalyst for the Synthesis of Tetrahydrobenzo [B]Pyrans in Water, Heterocycl. Lett., 7(1): 35–44 (2017).

[33] Hasaninejad A., Zare A., Zolfigol M.A., Abdeshah M., Ghaderi A., Nami-Ana F., Synthesis of Poly-Substituted Quinolines via Friedländer Hetero-Annulation Reaction Using Silica-Supported P2O5 under Solvent-Free Conditions, Iran. J. Chem. Chem. Eng. (IJCCE), 30(1): 73–81 (2011).

[34] Keshwal B.S., Rajguru D., Acharya A.D., DBU as a Novel and Highly Efficient Catalyst for the Synthesis of 3, 5-Disubstituted-2, 6-dicyanoanilines Under Conventional and Microwave Conditions, Iran. J. Chem. Chem. Eng. (IJCCE), 35(1): 37–42 (2016).

[35] Sheikhhosseini E., Sattaei Mokhtari T., Faryabi M., Rafiepour A., Soltaninejad S., Iron Ore Pellet, A Natural and Reusable Catalyst for Synthesis of Pyrano [2, 3-d] pyrimidine and Dihydropyrano [c] chromene Derivatives in Aqueous Media, Iran. J. Chem. Chem. Eng. (IJCCE), 5(1): 43–50 (2016).

[36] Gohani, M., H van Tonder, J., CB Benzuidenhoudt, B., NaHSO4-SiO2: An Efficient Reusable Green Catalyst for Selective C-3 Propargylation of Indoles with Tertiary Propargylic Alcohols, Iran. J. Chem. Chem. Eng. (IJCCE), 34(3): 11–17 (2015).

[37] Nakhaei A., Yadegarian S., Synthesis of Tetrahydrobenzo [a] xanthene-11-one Derivatives Using ZrO2–SO3H as Highly Efficient Recyclable Nano-catalyst, J. Appl. Chem. Res., 11(3): 72–83 (2017).

[38] Mohammadi Ziarani G., Mousavi S., Lashgari N., Badiei A., Shakiba M., Application of Sulfonic Acid Functionalized Nanoporous Silica (SBA-Pr-SO3H) in the Green One-Pot Synthesis of Polyhydroacridine Libraries, Iran. J. Chem. Chem. Eng. (IJCCE), 32(4): 9–16 (2013).

[39] Chunhua X., Caiping Y., Adsorption Behavior of Cu(II) in Aqueous Solutions by SQD-85 Resin, Iran. J. Chem. Chem. Eng. (IJCCE), 32(2): 57–66 (2013).

[40] Nakhaei A., Hosseininasab N., Yadegarian S., Synthesis of 1, 4-Dihydropyridine Derivatives Using Nano-Zirconia Sulfuric Acid as Highly Efficient Recyclable Catalyst, Heterocycl. Lett., 7(1): 81–90 (2017).

 [41] Mohanazadeh F., Rahimi S., HNO3/N, N-Diethylethanaminium-2-(Sulfooxy) Ethyl Sulfate as an Efficient System for the Regioselective of Aromatic Compounds, Iran. J. Chem. Chem. Eng. (IJCCE), 30(2): 73–77 (2011).

[42] Mokhtary M., Rastegar Niaki M., PolyVinylPolyPyrrolidone-Supported Boron Trifluoride (PVPP-BF3); Highly Efficient Catalyst for Oxidation of Aldehydes to Carboxylic Acids and Esters by H2O2, Iran. J. Chem. Chem. Eng. (IJCCE), 32(1): 43–48 (2013).

[43] Mohammadi Ziarani, G., Badiei, A., Azizi, M., Zarabadi, P., Synthesis of 3, 4-dihydropyrano [c] Chromene Derivatives Using Sulfonic Aacid Functionalized Silica (SiO2PrSO3H), Iran. J. Chem. Chem. Eng. (IJCCE), 30(2): 59–65 (2011).

[44] Salamatinia B., Hashemizadeh I., Ahmad Zuhairi A., Alkaline Earth Metal Oxide Catalysts for Biodiesel Production from Palm Oil: Elucidation of Process Behaviors and Modeling Using Response Surface Methodology, Iran. J. Chem. Chem. Eng., 32(1): 113–126 (2013).

[45] Feyzi M., Mirzaei A.A., Preparation and Characterization of CoMn/TiO2 Catalysts for Production of Light Olefins, Iran. J. Chem. Chem. Eng. (IJCCE), 30(1): 17–28 (2011).

[46] Fazeli A., Khodadadi A.A., Mortazavi Y., Manafi H., Cyclic Regeneration of Cu/ZnO/Al2O3 Nano Crystalline Catalyst of Methanol Steam Reforming for Hydrogen Production in a Micro-Fixed-Bed Reactor, Iran. J. Chem. Chem. Eng. (IJCCE), 32(3): 45–59 (2013).

[47] Sayama K., Arakawa H., Photocatalytic Decomposition of Water and Photocatalytic Reduction of Carbon Dioxide over ZrO2 Catalyst, J. Phys. Chem., 97(3): 531–533 (1993).

[48] Nakhaei A., Davoodnia A., Application of a Keplerate Type Giant Nanoporous Isopolyoxomolybdate as a Reusable Catalyst for the Synthesis of 1, 2, 4, 5-tetrasubstituted Imidazoles, Chin. J. Catal., 35(10): 1761–1767 (2014).

[49] Nakhaei A., Davoodnia A., Morsali A., Extraordinary Catalytic Activity of a Keplerate-Type Giant Nanoporous Isopolyoxomolybdate in the Synthesis of 1, 8-dioxo-octahydroxanthenes and 1, 8-dioxodecahydroacridines, Res. Chem. Intermed.,41(10): 7815-7826 (2015).

[50] Mirzaie Y., Lari J., Vahedi H., Hakimi M., Nakhaei A., Rezaeifard A., Fast and Green Method to Synthesis of Quinolone Carboxylic Acid Derivatives Using Giant-Ball Nanoporous Isopolyoxomolybdate as Highly Efficient Recyclable Catalyst in
Refluxing Water
, J. Mex. Chem. Soc., 61(1): 35-40 (2017).

[51] Yadegarian S., Davoodnia A., Nakhaei A., Solvent-Free Synthesis of 1, 2, 4, 5-Tetrasubstituted Imidazoles Using Nano Fe3O4@ SiO2-OSO3H as a Stable and Magnetically Recyclable Heterogeneous Catalyst, Orient. J. Chem., 31(1): 573-579
(2015).

[52] Davoodnia A., Nakhaei A., Fast and Solvent-Free Synthesis of Polyhydroquinolines Catalyzed by a Keplerate Type Giant Nanoporous Isopolyoxomolybdate as a Reusable Catalyst, Synth. React. Inorg. Metal-Org. Nano-Met. Chem., 46(7): 1073-1080 (2016).

[53] Davoodnia A., Nakhaei A., Tavakoli-Hoseini N., Catalytic Performance of a Keplerate-Type, Giant-Ball Nanoporous Isopolyoxomolybdate as a Highly Efficient Recyclable Catalyst for the Synthesis of Biscoumarins, Z. Naturforsch. B, 71(3): 219-225 (2016).

[54] Nakhaei A., Davoodnia A., Yadegarian S., Nano Isopolyoxomolybdate Catalyzed Biginelli Reaction for One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and 3,4-Dihydropyrimidin-2(1H)-thiones Under Solvent-Free Conditions, Russ. J. Gen. Chem., 86(12): 2870-2876(2016).

[55] Rohaniyan M., Davoodnia A., Nakhaei A., Another Application of (NH4) 42 [MoVI72MoV60O372 (CH3COO) 30 (H2O) 72] as a Highly Efficient Recyclable Catalyst for the Synthesis of Dihydropyrano [3, 2‐c] Chromenes, Appl. Organometal. Chem.,30(8): 626-629 (2016).

[56] Nakhaei A., Morsali A., Davoodnia A., An Efficient Green Approach to Aldol and Cross-Aldol Condensations of Ketones with Aromatic Aldehydes Catalyzed by Nanometasilica Disulfuric Acid in Water, Russ. J. Gen. Chem., 87(5): 1073-1078(2017).

[57] Kolvari E., Koukabi N., Hosseini M.M., Vahidian M., Ghobadi E., Nano-ZrO 2 Sulfuric Acid: A Heterogeneous Solid Acid Nano Catalyst for Biginelli Reaction under Solvent Free Conditions, RSC Advances, 6(9): 7419-7425 (2016).

[58] Amoozadeh A., Rahmani S., Bitaraf M., Abadi F. B., Tabrizian E., Nano-Zirconia as an Excellent Nano Support for Immobilization of Sulfonic Acid: A New, Efficient and Highly Recyclable Heterogeneous Solid Acid Nanocatalyst for Multicomponent Reactions, New J. Chem., 40(1): 770-780 (2016).

[59] Nakhaei A., Nano-Fe3O4@ZrO2-H3PO4 as an Efficient Recyclable Catalyst for the Neat Preparation of Thiazole Derivatives in Ordinary or Magnetized Water, Current Catal., 7(1): 72-78 (2018).

Statistics
Article View: 133
PDF Download: 38
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

web page hit counter

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0 International License.

Journal Management System. Designed by sinaweb.