Supercapacitive Performance of Ordered Mesoporous Carbon (CMK-3) in Neutral Aqueous Electrolyte

Document Type: Research Article

Authors

1 Department of chemistry and Chemical Engineering, Buinzahra Branch, Islamic Azad University, P.O. Box 14115-175 Buinzahra, I.R. IRAN

2 Chemistry & Chemical Engineering Research Center of Iran (CCERCI), P.O. Box 1496813151 Tehran, I.R. IRAN

Abstract

Ordered Mesoporous Carbon (OMC) represents an interesting material for electric double layer capacitors which has the high surface area, easily accessed ordered pore channels and lower production cost. In this work, CMK-3 as promising OMC has been fabricated using the ordered mesoporous silica SBA-15 as a template. The structure and morphology of CMK-3 are characterized by X-ray diffraction, nitrogen adsorption/desorption, and scanning electron microscopy. CMK-3 is sprayed on the surface of highly conductive three-dimensional nickel foam and characterized as an electrode for electric double layer capacitors. When this electrode is soaked in a neutral aqueous electrolyte solution, reaches a specific capacitance as high as 285 and 167 F/g, at a current density of 10 and 34 A/g, respectively. CMK-3 shows excellent long-term stability with >90% capacitance retention after 10000 cycles, as well as high power (37 kW/kg) and energy density (98 Wh/kg).

Keywords

Main Subjects


[1] Xu F., Xu J., Xu H., Lu Y., Yang H., Tang Z., Lu Z., Fu R., Wu D., Fabrication of Novel Powdery Carbon Aerogels with High Surface Areas for Superior Energy Storage, Energ. Stor. Mat., 7:8-16 (2017).

[2] Solomon S., Plattner G.-K., Knutti R., Friedlingstein P., Irreversible Climate Change Due to Carbon Dioxide Emissions, Proc. Natl. Acad. Sci, 106:1704-1709 (2009).

[3] Béguin F., Presser V., Balducci A., Frackowiak E., Carbons and Electrolytes for Advanced Supercapacitors, Adv. Mater., 26:2219-2251 (2014).

[5] Blomquist N., Wells T., Andres B., Bäckström J., Forsberg S., Olin H., Metal-Free Supercapacitor with Aqueous Electrolyte and Low-Cost Carbon Materials, Sci. Rep., 7:39836 (2017).

[7] Xia Y., Yang Z., Zhu Y., Porous Carbon-Based Materials for Hydrogen Storage: Advancement and Challenges, J. Mater. Chem. A, 1:9365-9381 (2013).

[8] Kumar K.V., Preuss K., Titirici M.-M., Rodríguez-Reinoso F., Nanoporous Materials for the Onboard Storage of Natural Gas, Chem. Rev., 117:1796-1825 (2017).

[9] Becker HI: Low Voltage Electrolytic Capacitor. In US Patent, 2800616 A., USA, (1957).

[10] Yu Z., Tetard L., Zhai L., Thomas J., Supercapacitor Electrode Materials: Nanostructures from 0 to 3 Dimensions, Ener. Environ. Sci., 8:702-730 (2015).

[11] He D., Cheng K., Peng T., Sun X., Pan M., Mu S., Bifunctional Effect of Reduced Graphene Oxides to Support Active Metal Nanoparticles for Oxygen Reduction Reaction and Stability, J. Mater. Chem., 22:21298-21304 (2012).

[12] Peng T., Kou Z., Wu H., Mu S., Graphene from Amorphous Titanium Carbide by Chlorination under 200°C and Atmospheric Pressures, Sci. Rep., 4:5494 (2014).

[13] Liu C., Yu Z., Neff D., Zhamu A., Jang B.Z., Graphene-Based Supercapacitor with an Ultrahigh Energy Density, Nano Lett., 10:4863-4868 (2010).

[15] Eftekhari A., Fan Z., Ordered Mesoporous Carbon and Its Applications for Electrochemical Energy Storage and Conversion, Mater. Chem. Front., 1:1001-1027(2017).

[16] Yu X., Wang J.-g., Huang Z.-H., Shen W., Kang F., Ordered Mesoporous Carbon Nanospheres as Electrode Materials for High-Performance Supercapacitors, Electrochem. Commun., 36:66-70 (2013).

[17] Bahrami Adeh N., Mohammadi N., Khorramjah F., Synthesis and Characterization of a Novel Nanoporous Composite Based on Elemental Sulfur and Graphitic Mesoporous Carbon, Iran. J. Chem. Chem. Eng. (IJCCE), 35:1-9 (2016).

[19] Wang Y.-T., Lu A.-H., Li W.-C., Mesoporous Manganese Dioxide Prepared Under Acidic Conditions as High-Performance Electrode Material for Hybrid Supercapacitors, Micropor. Mesopor. Mater., 153:247-253 (2012).

[21] Liu W.-x., Liu N., Song H.-h., Chen X.-h., Properties of Polyaniline/Ordered Mesoporous Carbon Composites as Electrodes for Supercapacitors, New Carbon Mater., 26:217-223 (2011).

[22] Dou Y.-Q., Zhai Y., Liu H., Xia Y., Tu B., Zhao D., Liu X.-X., Syntheses of Polyaniline/Ordered Mesoporous Carbon Composites with Interpenetrating Framework and Their Electrochemical Capacitive Performance in Alkaline Solution, J. Power Sources, 196:1608-1614 (2011).

[23] Zhang Z., Wang G., Li Y., Zhang X., Qiao N., Wang J., Zhou J., Liu Z., Hao Z., A New Type of Ordered Mesoporous Carbon/Polyaniline Composites Prepared by a Two-Step Nanocasting Method for High-Performance Supercapacitor Applications, J. Mater. Chem. A, 2:16715-16722 (2014).

[24] Zhou H., Zhu S., Hibino M., Honma me., Electrochemical Capacitance of Self-Ordered Mesoporous Carbon, J. Power Sources, 122:219-223 (2003).

[25] Xing W., Qiao S.Z., Ding R.G., Li F., Lu G.Q., Yan Z.F., Cheng H.M., Superior Electric Double Layer Capacitors Using Ordered Mesoporous Carbons, Carbon, 44:216-224 (2006).

[26] Lei Z., Bai D., Zhao X.S., Improving the Electrocapacitive Properties of Mesoporous CMK-5 Carbon with Carbon Nanotubes and Nitrogen Doping, Micropor. Mesopor. Mater., 147:86-93 (2012).

[27] Fuertes A.B., Lota G., Centeno T.A., Frackowiak E., Templated Mesoporous Carbons for Supercapacitor Application, Electrochim. Acta, 50:2799-2805 (2005).

[28] Vix-Guterl C., Frackowiak E., Jurewicz K., Friebe M., Parmentier J., Béguin F., Electrochemical Energy Storage in Ordered Porous Carbon Materials, Carbon, 43:1293-1302 (2005).

[29] Li H.-Q., Liu R.-L., Zhao D.-Y., Xia Y.-Y., Electrochemical Properties of an Ordered Mesoporous Carbon Prepared by Direct Tri-Constituent co-Assembly, Carbon, 45:2628-2635 (2007).

[30] Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G.H., Chmelka B.F., Stucky G.D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science, 279:548-552 (1998).

[31] Jun S., Joo S.H., Ryoo R., Kruk M., Jaroniec M., Liu Z., Ohsuna T., Terasaki O., Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure, J. Am. Chem. Soc., 122:10712-10713 (2000).

[32] Chen S., Tang Q., Chen X., Hu A., Deng W., Liu Z., Controllable Graphene Coated Mesoporous Carbon/Sulfur Composite for Lithium-Sulfur Batteries, RSC Adv., 5:74138-74143 (2015).

[33] Li H., Duan W., Zhao Q., Cheng F., Liang J., Chen J., 2,2[prime or minute]-Bis(3-hydroxy-1,4-naphthoquinone)/CMK-3 Nanocomposite as Cathode Material for Lithium-Ion Batteries, Inorg. Chem. Front., 1:193-199 (2014).

[34] Vinu A., Hossian K.Z., Srinivasu P., Miyahara M., Anandan S., Gokulakrishnan N., Mori T., Ariga K., Balasubramanian V.V., Carboxy-Mesoporous Carbon and Its Excellent Adsorption Capability for Proteins, J. Mater. Chem., 17:1819-1825 (2007).

[35] Choi H., Zhao X., Kim D.-S., Ahn H.-J., Kim K.-W., Cho K.-K., Ahn J.-H., A Mesoporous Carbon-Sulfur Composite as Cathode Material for High Rate Lithium-Sulfur Batteries, Mater. Res. Bull., 58:199-203 (2014).

[36] Kazemi S.H., Kiani M.A., Ghaemmaghami M., Kazemi H., Nano-Architectured MnO2 Electrodeposited on the Cu-Decorated Nickel Foam Substrate as Supercapacitor Electrode with Excellent Areal Capacitance, Electrochim. Acta, 197:107-116 (2016).