• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
Articles in Press
Current Issue
Journal Archive
Volume Volume 36 (2017)
Issue Issue 6
Issue Issue 5
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 35 (2016)
Volume Volume 34 (2015)
Volume Volume 33 (2014)
Volume Volume 32 (2013)
Volume Volume 31 (2012)
Volume Volume 30 (2011)
Volume Volume 29 (2010)
Volume Volume 28 (2009)
Volume Volume 27 (2008)
Volume Volume 26 (2007)
Volume Volume 25 (2006)
Volume Volume 24 (2005)
Volume Volume 23 (2004)
Volume Volume 22 (2003)
Volume Volume 21 (2002)
Volume Volume 20 (2001)
Volume Volume 19 (2000)
Volume Volume 18 (1999)
Volume Volume 17 (1998)
Volume Volume 16 (1997)
Volume Volume 15 (1996)
Volume Volume 14 (1995)
Volume Volume 13 (1994)
Volume Volume 12 (1993)
Volume Volume 11 (1992)
Volume Volume 10 (1991)
Volume Volume 9 (1990)
Volume Volume 8 (1989)
Volume Volume 7 (1988)
Volume Volume 6 (1987)
Farzi, A., Jomea, M. (2017). Simulation and Control of a Methanol-To-Olefins (MTO) Laboratory Fixed-Bed Reactor. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36(2), 175-190.
Ali Farzi; Mohammad Javad Jomea. "Simulation and Control of a Methanol-To-Olefins (MTO) Laboratory Fixed-Bed Reactor". Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36, 2, 2017, 175-190.
Farzi, A., Jomea, M. (2017). 'Simulation and Control of a Methanol-To-Olefins (MTO) Laboratory Fixed-Bed Reactor', Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36(2), pp. 175-190.
Farzi, A., Jomea, M. Simulation and Control of a Methanol-To-Olefins (MTO) Laboratory Fixed-Bed Reactor. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 2017; 36(2): 175-190.

Simulation and Control of a Methanol-To-Olefins (MTO) Laboratory Fixed-Bed Reactor

Article 15, Volume 36, Issue 2 - Serial Number 82, May and June 2017, Page 175-190  XML PDF (848 K)
Document Type: Research Article
Authors
Ali Farzi 1; Mohammad Javad Jomea2
1Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, I.R. Iran
2Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, I.R. IRAN
Abstract
In this research, modeling, simulation, and control of a methanol-to-olefins laboratory fixed-bed reactor with electrical resistance furnace have been investigated in both steady-state and dynamic conditions. The reactor was modeled as a one-dimensional pseudo-homogeneous system. Then, the reactor was simulated at steady-state conditions and the effect of different parameters including inlet flow rate, inlet temperature and electrical resistance temperature on reactor performance was studied. Results showed that the most effective parameter is electrical resistance temperature. Thus, it was selected as manipulating variable for controlling product quality. In the next step, dynamic simulation of the process was performed and the effect of different disturbances on the dynamic behavior of the reactor was assessed. Finally, PID and Neural Network Model Predictive (NNMP) controllers were utilized for process control, and their performances were compared to each other. The response of the control system to different disturbances and set point changes showed that both PID and NNMP control systems can maintain the process at the desired conditions. PID controller had smaller rise time and no offset compared to NNMP controller while NNMP controller had smaller overshoot.
Keywords
Methanol-To-Olefins (MTO); dynamic simulation; Electrical resistance furnace; Artificial Neural Network (ANN); Neural Network Model Predictive Control (NNMPC)
Main Subjects
Unit Operations, Separation Processes
References

[1] Van V., "Methanol To Olefins", SRI, Process Economics Report Number 261 (2007).

[2] Xiang D., Qian Y., Man Y., Yang S., Techno-Economic Analysis of the Coal-to-Olefins Process  in Comparison with the Oil-to-Olefins Process, Appl. Energy, 113: 639-647 (2014).

[3] Stöcker M., Methanol-to-Hydrocarbons: Catalytic Materials and Their Behavior, Microporous Mesoporous Mater., 29 (1–2): 3-48 (1999).

[4] Al Wahabi S.M., "Conversion of Methanol to Light Olefins on SAPO-34: Kinetic Modeling and Reactor Design", PhD. Thesis, Texas A&M University (2003).

[5] Froment G.F., Dehertog W.J.H., Marchi A.J., Zeolite Catalysis in the Conversion of Methanol into Olefins, In: "Catalysis", J.J. Spivey (Ed.), The Royal Society of Chemistry, 1-64 (1992).

[6] Freiding J., Kraushaar-Czarnetzki B., Novel Extruded Fixed-Bed MTO Catalysts with High Olefin Selectivity and High Resistance Against Coke Deactivation, Appl. Catal., A, 391 (1–2): 254-260 (2011).

[7] Yang H., Liu Z., Gao H., Xie Z., Synthesis and Catalytic Performances of Hierarchical SAPO-34 Monolith, J. Mater. Chem., 20(16): 3227-3231 (2010).

[8] Emrani P., Fatemi S., Ashraf-Talesh S., Effect of Synthesis Parameters on Phase Purity, Crystallinity and Particle Size of SAPO-34, Iran. J. Chem. Chem. Eng. (IJCCE), 30 (4): 29-36 (2011).

[9] Chang C.D., Hydrocarbons from Methanol, Catal. Rev., 25 (1): 1-118 (1983).

[10] Chen D., Rebo H.P., Moljord K., Holmen A., Methanol Conversion to Light Olefins over SAPO-34. Sorption, Diffusion, and Catalytic Reactions, Ind. Eng. Chem. Res., 38 (11): 4241-4249 (1999).

[11] Haw J.F., Song W., Marcus D.M., Nicholas J.B., The Mechanism of Methanol to Hydrocarbon Catalysis, Acc. Chem. Res., 36 (5): 317-326 (2003).

[12] Wu W., Guo W., Xiao W., Luo M., Methanol Conversion to Olefins (MTO) Over H-ZSM-5: Evidence of Product Distribution Governed by Methanol Conversion, Fuel Process. Technol., 108: 19-24 (2013).

[13] Bos A.N.R., Tromp P.J.J., Akse H.N., Conversion of Methanol to Lower Olefins. Kinetic Modeling, Reactor Simulation, and Selection, Ind. Eng. Chem. Res., 34 (11): 3808-3816 (1995).

[14] Gayubo A.G., Aguayo A.T., Olazar M., Vivanco R., Bilbao J., Kinetics of the Irreversible Deactivation of the HZSM-5 Catalyst in the MTO Process, Chem. Eng. Sci., 58 (23–24): 5239-5249 (2003).

[15] Park T.-Y., Froment G.F., Kinetic Modeling of the Methanol to Olefins Process. 1. Model Formulation, Ind. Eng. Chem. Res., 40 (20): 4172-4186 (2001).

[16] Park T.-Y., Froment G.F., Kinetic Modeling of the Methanol to Olefins Process. 2. Experimental Results, Model Discrimination, and Parameter Estimation, Ind. Eng. Chem. Res., 40 (20): 4187-4196 (2001).

[17] Alwahabi S.M., Froment G.F., Single Event Kinetic Modeling of the Methanol-to-Olefins Process on SAPO-34, Ind. Eng. Chem. Res., 43 (17): 5098-5111 (2004).

[18] Chen D., Grønvold A., Moljord K., Holmen A., Methanol Conversion to Light Olefins over SAPO-34: Reaction Network and Deactivation Kinetics, Ind. Eng. Chem. Res., 46 (12): 4116-4123 (2007).

[19] Mihail R., Straja S., Maria G., Musca G., Pop G., A Kinetic Model for Methanol Conversion to Hydrocarbons, Chem. Eng. Sci., 38 (9): 1581-1591 (1983).

[20] Rostami R.B., Lemraski A.S., Ghavipour M., Behbahani R.M., Shahraki B.H., Hamule T., Kinetic Modelling of Methanol Conversion to Light Olefins Process Over Slicoaluminophosphate (SAPO-34) Catalyst, Chem. Eng. Res. Des., 106: 347-355 (2016).

[21] Kaarsholm M., Rafii B., Joensen F., Cenni R., Chaouki J., Patience G.S., Kinetic Modeling of Methanol-to-Olefin Reaction over ZSM-5 in Fluid Bed, Ind. Eng. Chem. Res., 49: 29-38 (2010).

[22] Gayubo A.G., Arandes J.M., Aguayo A.T., Olazar M., Bilbao J., Calculation of the Kinetics of Deactivation by Coke in an Integral Reactor for a Triangular Scheme Reaction, Chem. Eng. Sci., 48 (6): 1077-1087 (1993).

[23] Chen D., Rebo H.P., Grønvold A., Moljord K., Holmen A., Methanol Conversion to Light Olefins Over SAPO-34: Kinetic Modeling of Coke Formation, Microporous Mesoporous Mater., 35–36 (0): 121-135 (2000).

[24] Kaarsholm M., Joensen F., Nerlov J., Cenni R., Chaouki J., Patience G.S., Phosphorous Modified ZSM-5: Deactivation and Product Distribution for MTO, Chem. Eng. Sci., 62 (18–20): 5527-5532 (2007).

[25] Chae H.-J., Song Y.-H., Jeong K.-E., Kim C.-U., Jeong S.-Y., Physicochemical Characteristics of ZSM-5/SAPO-34 Composite Catalyst for MTO Reaction, J. Phys. Chem. Solids, 71 (4): 600-603 (2010).

[26] Lee Y.J., Lee J.S., Park Y.S., Yoon K.B., Synthesis of Large Monolithic Zeolite Foams with Variable Macropore Architectures, Adv. Mater., 13 (16): 1259-1263 (2001).

[27] Müller S., Liu Y., Vishnuvarthan M., Sun X., van Veen A.C., Haller G.L., Sanchez-Sanchez M., Lercher J.A., Coke Formation and Deactivation Pathways on H-ZSM-5 in the Conversion of Methanol to Olefins, J. Catal., 325: 48-59 (2015).

[28] Chen J.Q., Bozzano A., Glover B., Fuglerud T., Kvisle, S., Recent Advancements in Ethylene and Propylene Production Using the UOP/Hydro MTO Process, Catal. Today, 106 (1–4): 103-107 (2005).

[29] Chang C.D., Kuo J.C.W., Lang W.H., Jacob S.M., Wise J.J., Silvestri A.J., Process Studies on the Conversion of Methanol to Gasoline, Ind. Eng. Chem. Process Des. Dev., 17 (3): 255-260 (1978).

[30] Anderson J.R., Mole T., Christov V., Mechanism of Some Conversions Over ZSM-5 Catalyst, J. Catal., 61 (2): 477-484 (1980).

[31] Voltz S.E., Wise J.J., "Development Studies on Conversion of Methanol and Related Oxygenates to Gasoline", Final Report, US ERDA Contract No. E (49-18)-1773 (1976).

[32] Gayubo A.G., Aguayo A.T., Sánchez del Campo A.E., Tarrío A.M., Bilbao J., Kinetic Modeling of Methanol Transformation into Olefins on a SAPO-34 Catalyst, Ind. Eng. Chem. Res., 39 (2): 292-300 (2000).

[33] Chen N.Y., Reagan W.J., Evidence of Autocatalysis in Methanol to Hydrocarbon Reactions over Zeolite Catalysts, J. Catal., 59 (1): 123-129 (1979).

[34] Chang C.D., A Kinetic Model for Methanol Conversion to Hydrocarbons, Chem. Eng. Sci., 35(3): 619-622 (1980).

[35] Alwahabi S.M., Froment G.F., Conceptual Reactor Design for the Methanol-to-Olefins Process on SAPO-34, Ind. Eng. Chem. Res., 43 (17): 5112-5122 (2004).

[36] Nijemeisland M., Dixon A.G., CFD Study of Fluid Flow and Wall Heat transfer in a Fixed Bed of Spheres, AIChE J., 50 (5): 906-921 (2004).

[37] Zhuang Y.-Q., Gao X., Zhu Y.-p., Luo Z.-h., CFD Modeling of Methanol to Olefins Process in a Fixed-Bed Reactor, Powder Technol., 221: 419-430 (2012).

[38] Schoenfelder H., Hinderer J., Werther J., Keil F.J., Methanol to Olefins—Prediction of the Performance of a Circulating Fluidized-Bed Reactor on the Basis of Kinetic Experiments in a Fixed-Bed Reactor, Chem. Eng. Sci., 49 (24, Part 2): 5377-5390 (1994).

[39] Soundararajan S., Dalai A.K., Berruti F., Modeling of Methanol to Olefins (MTO) Process in a Circulating Fluidized Bed Reactor, Fuel, 80 (8): 1187-1197 (2001).

[40] Chang J., Zhang K., Chen H., Yang Y., Zhang L., CFD Modelling of the Hydrodynamics and Kinetic Reactions in a Fluidised-Bed MTO Reactor, Chem. Eng. Res. Des., 91 (12): 2355-2368 (2013).

[41] Lu B., Luo H., Li H., Wang W., Ye M., Liu Z., Li J., Speeding up CFD Simulation of Fluidized Bed Reactor for MTO by Coupling CRE Model, Chem. Eng. Sci., 143: 341-350 (2016).

[42] Green D.W., Perry R.H., "Perry's Chemical Engineers' Handbook", McGraw-Hill Book Company, New York, USA (2007).

[43] Hottel A.F., Sarofim H.C., "Radiative Transfer", McGraw-Hill Book Company, New York, USA (1967).

[44] Froment G.F., Fixed Bed Catalytic Reactors—Current Design Status, Ind. Eng. Chem., 59 (2): 18-27 (1967).

[45] de Wasch A.P., Froment G.F., Heat Transfer in Packed Beds, Chem. Eng. Sci., 27 (3): 567-576 (1972).

[46] Dixon A.G., Cresswell D.L., Theoretical Prediction of Effective Heat Transfer Parameters in Packed Beds, AIChE J., 25 (4): 663-676 (1979).

[47] Froment G.F., Bischoff K.B., De Wilde J., "Chemical Reactor Analysis and Design", Wiley, New York, USA (2011).

[48] Schiesser W.E., "The Numerical Method of Lines: Integration of Partial Differential Equations", Academic Press, Inc., San Diego, California (1991).

[49] Samarasinghe, S., "Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition", Auerbach Publications, Taylor & Francis Group, New York (2006).

[50] Krose B., van der Smagt P., "An Introduction to Neural Networks ", The University of Amsterdam, The Netherlands (1996).

[51] Valadkhani A., Shahrokhi M., Simulation and Control of an Aromatic Distillation Column, Iran. J. Chem. Chem. Eng. (IJCCE), 26(2): 97-108 (2007).

[52] Åkesson B.M., Toivonen H.T., A Neural Network Model Predictive Controller, J. Process Control, 16(9): 937-946 (2006).

[53] Draeger A., Engell S., Ranke H., Model Predictive Control Using Neural Networks, IEEE Control Syst., 15(5): 61-66 (1995).

[54] Yeh T.-M., Huang M.-C., Huang C.-T., Estimate of Process Compositions and Plantwide Control from Multiple Secondary Measurements Using Artificial Neural Networks, Comput. Chem. Eng., 27 (1): 55-72 (2003).

[55] Akpan V.A., Hassapis G.D., Nonlinear Model Identification and Adaptive Model Predictive Control Using Neural Networks, ISA Trans., 50 (2): 177-194 (2011).

[56] Yu D.L., Gomm J.B., Implementation of Neural Network Predictive Control to a Multivariable Chemical Reactor, Control Eng. Pract., 11(11): 1315-1323 (2003).

[57] Kittisupakorn P., Thitiyasook P., Hussain M.A., Daosud W., Neural Network Based Model Predictive Control for a Steel Pickling Process, J. Process Control, 19 (4): 579-590 (2009).

[58] Shampine, L. F., and Reichelt, M. W., The MATLAB ODE Suite, SIAM J. Sci. Comput., 18: 1-22 (1997).

[59] Tan W., Liu J., Chen T., Marquez H.J., Comparison of Some Well-Known PID Tuning Formulas, Comput. Chem. Eng., 30 (9): 1416-1423 (2006).

Statistics
Article View: 358
PDF Download: 432
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

web page hit counter

Journal Management System. Designed by sinaweb.