Chitosan/Poly(Amide-Imide) Blend Films: Studies on Thermal and Mechanical Stability, Morphology and Biodegradability

Document Type: Research Article

Authors

1 Department of Chemistry, Semnan University, Semnan, I.R. IRAN

2 Department of Chemistry, Amirkabir University of Technology, Tehran, Iran

Abstract

A diacid monomer was synthesized by the condensation of L-tryptophan amino acid and pyromellitic dianhydride (PMDA). The diacid was utilized for the synthesis of three types of poly(amide-imide)s (PAIs) using three different kinds of diamines. The synthesized monomer and PAIs were characterized using FT-IR, 1H-NMR and 13C-NMR spectroscopies and the PAIs were also used for the fabrication of chitosan (CS)/PAI blend films. XRD patterns of the PAIs, CS and CS/PAI blend films were also studied. Thermal stability of PAIs, CS and CS/PAI samples were studied using thermogravimetric analysis (TGA). The blend samples showed a higher thermal stability compared to the CS film, especially at higher temperatures. Morphology of the CS and blend CS/PAI films were studied before and after the biodegradation by SEM. The mechanical stability studies showed that blend CS/PAI films had a proper mechanical strength and their young’s modulus increased compared to the pristine chitosan. The in vitro fungal colonization ofdiacid monomer, PAIs, pure CS and blend CS/PAI samples were performed using Aspergillus niger fungi. After biodegradation, the pure CS showed the highest weight loss of 21.2 wt % among the samples. The blend CS/PAI samples also showed higher weight losses compared to the pure PAIs.
 

Keywords

Main Subjects


[1] Luckachan G. E., Pillai C., Biodegradable Polymers-a Review on Recent Trends and Emerging Perspectives, J. Polym. Environ., 19:637-676 (2011).

[2] Mohammad Beigi S., Babapoor A., Maghsoodi V., Mousavi S.M., Rajabi N., Batch Equilibrium and Kinetics Studies of Cd (II) Ion Removal from Aqueous Solution Using Porous Chitosan Hydrogel Beads, Iran. J. Chem. Chem. Eng. (IJCCE)., 28(3): 81-89 (2009).

[3] Mallakpour S., Zeraatpisheh F., Sabzalian M. R., Construction, Characterization and Biological Activity of Chiral and Thermally Stable Nanostructured Poly (Ester-Imide) s as Tyrosine-Containing Pseudo-Poly (Amino Acid) s, J. Polym. Environ., 20:117-123 (2012).

[4] Yeul V. S., Rayalu S. S., Unprecedented Chitin and Chitosan: a Chemical Overview, J. Polym. Environ., 21:606-614 (2013).

[5] Khalid S., Preparation and Properties of Polycaprolactone/Poly (Butylene Terephthalate) Blend, Iran. J. Chem. Chem. Eng. (IJCCE), 29(3): 77-81(2010).

[6]  Hu Y.-L., Qi W., Han F., Shao J.-Z., Gao J.-Q., Toxicity Evaluation of Biodegradable Chitosan Nanoparticles Using a Zebrafish Embryo Model, Int. J. nanomedicine., 6: 3351-3359 (2011).

[7] Pillai C., Paul W., Sharma C., "Chitosan: Manufacture, Properties and Uses", Nova Science Publishers, Inc, Hauppauge., (2010).

[8] Zhang K., Zhao M., Cai L., Wang Z.-k., Sun Y.-f., Preparation of Chitosan/Hydroxyapatite Guided Membrane Used for Periodontal Tissue Regeneration, Chin. J. Polym. Sci., 28:555-561 (2010).

[9] Richard I., Thibault M., Crescenzo G. De, Buschmann M. D., Lavertu M., Ionization Behavior of Chitosan and Chitosan–DNA Polyplexes Indicate that Chitosan Has a Similar Capability to Induce a Proton-Sponge Effect as PEI, Biomacromolecules., 14:1732-1740 (2013).

[10] Geng C.-z., Hu X., Yang G.-h., Zhang Q., Chen F., Mechanically Reinforced Chitosan/Cellulose Nanocrystals Composites with Good Transparency and Biocompatibility, Chin. J. Polym. Sci., 33:61-69 (2015).

[12] Varaprasad K., Vimala K., Ravindra S., Reddy N. N., Reddy G. S. M., Raju K. M., Biodegradable Chitosan Hydrogels for in Vitro Drug Release Studies of 5-Flurouracil an Anticancer Drug,
J. Polym. Environ., 20:573-582 (2012).

[13] Liu Y.-L., Chen W.-H., Chang Y.-H., Preparation and Properties of Chitosan/carbon Nanotube Nanocomposites Using Poly (Styrene Sulfonic Acid)-Modified CNTs, Carbohyd. Polym., 76:232-238 (2009).

[14] Shao L., Chang X., Zhang Y., Huang Y., Yao Y., Guo Z., Graphene Oxide Cross-Linked Chitosan Nanocomposite Membrane, Appl. Surf. Sci., 280:989-992 (2013).

[15] Tian F., Wang L.-z., Li X.-m., Zhou G., Synthesis and Characterization of Chitosan-graft-Poly (Lactic Acid) Copolymer, Chin. J. Polym. Sci., 32:43-50 (2014).

[16] Azizi S., Ahmad M. B., Ibrahim N. A., Hussein M. Z., Namvar F., Preparation and Properties of Poly (Vinyl Alcohol)/Chitosan Blend Bio-Nanocomposites Reinforced by Cellulose Nanocrystals, Chin. J. Polym. Sci., 32:1620-1627 (2014).

[17] Torabi Angaji M., Hagheeghatpadjooh H., Preparation of Biodegradable Low Density Polyethylene by Starch – Urea Composition for Agricultural Applications, Iran. J. Chem. Chem. Eng. (IJCCE), 23(1):7-11 (2004).

[18] Benedict C. V., Cook W. J., Jarrett P., Cameron J., Huang S. J., Bell J. P., Fungal Degradation of Polycaprolactones, J. Appl. Polym. Sci., 28:327-334 (1983).

[20] Dwyer D.F., Tiedje J.M., Metabolism of Polyethylene Glycol by Two Anaerobic Bacteria, Desulfovibrio Desulfuricans and a Bacteroides sp, Appl. Environ. microbiol., 52:852-856 (1986).

[21] Fan Y., Chen G., Tanaka J., Tateishi T., Biosynthesis of Polyamides Containing Amino Acid Residues Through the Specific Aminolysis of Amino Acid Ester dDrivatives, Mater. Sci. Eng., C., 24:791-796 (2004).

[24] Li J., Effect of Fiber Surface Treatment on Wear Characteristics of Carbon Fiber Reinforced Polyamide 6 Composites, Iran. J. Chem. Chem. Eng. (IJCCE), 29(1):141-147 (2010).

[27] Sanda F., Endo T., Syntheses and Functions of Polymers Based on Amino Acids, Macromol. Chem. Phys., 200:2651-2661 (1999).

[28] Brown M. D., Gray A. I., Tetley L., Santovena A., Rene J., Schätzlein A. G., Uchegbu IF., In Vitro and in Vivo Gene Transfer with Poly (Amino Acid) vesicles, J. Controlled Release., 93:193-211 (2003).

[30] Hsiao S.-H., Liou G.-S., Kung Y.-C., Lee Y.-J., Synthesis and Characterization of Electrochromic Poly(Amide–Imide) s Based on the Diimide-Diacid from 4, 4′-diamino-4 ″-Methoxytriphenylamine and Trimellitic Anhydride, Eur. Polym. J., 46:1355-1366 (2010).

[34] Mallakpour S., Iderli M., Sabzalian M. R., In Vitro Studies on Biodegradable Chiral Nanostructure Poly (amide-imide) s Containing Different Natural Amino acids in green medium, Des. Monomers Polym., 16:509-514 (2013).

[39] Lozinskaya E., Shaplov A., Vygodskii Y. S., Direct Polycondensation in Ionic Liquids, Eur. Polym. J., 40: 2065-2075 (2004).

[40] Wasserscheid P., Welton T., "Ionic Liquids in Synthesis”, Wiley-VCH Verlag GmbH & Co. KGaA1, ISBNs: 3-527-30515-7 (2002).

[44] Lingyun W., Yingjun W., Derong C., Synthesis and Characterization of Novel Biodegradable Polyamides Containing α-amino Acid, J. Macromol. Sci., A., 46:312- 320 (2009).

[45] Sahadevan R., Ayyavoo J., Sundararaj S., Hari Sankar H. S., Mohan D.R., Performance Evaluation of Poly (amide-imide) Incorporated Cellulose Acetate ltrafiltration Membranes in the Separation of Proteins and Its Fouling Propensity by AFM Imaging, Ind. Eng. Chem. Res., 50:14016–14029 (2011).