Th(IV)/U(VI) Sorption on Modified SBA–15 Mesoporous Materials in Fixed–Bed Column

Document Type: Research Article


1 Phase Equilibria Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, I.R. IRAN

2 Organic and Nano Group, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, I.R. IRAN


The sorption of thorium and uranium ions by functionalized SBA–15 mesoporous silica materials with Schiff base ligating groups N–propylsalicylaldimine (SBA/SA) and ethylenediaminepropylesalicylaldimine (SBA/EnSA) from aqueous solution was investigated in fixed-bed column method. The TEMPeffect of pH, sample solution volume, and the column design parameters such as sample and eluent flow rates, and column bed height were studied. These investigations allowed to obtain the experimental breakthrough curves. Regardless to the adsorbent used, application of the columns with 2.5 cm bed height and sample flow rate 0.4 mL/min, resulted in the quantitative removal of 0.5 mg of Th(IV) and U(VI) ions from 200 and 250 mL aqueous solutions, adjusted at pH 4. The quantitative desorption of the loaded ions provided a preconcentration factor of 40 and 50 for Th(IV) and U(VI), respectively. Breakthrough studies showed the higher capacity of the column packed with SBA/EnSA in comparison to that packed with SBA/SA. The breakthrough curves indicated that both of the sorbents presents higher capacity towards uranium than thorium ions. The columns could be used for at least 3 sorption-desorption cycles. The investigated columns were examined for the recovery of Th(IV) and U(VI) from tap water and seawater samples.


Main Subjects

[2] Peng G.W, Ding D.X, Xiao F.Z., Wang X.L., Hun N., Wang Y.D., Dai Y.M., Cao Z., Adsorption of Uranium Ions from aqueous Solution by Amine Group Functionalized Magnetic Fe3O4 Nanoparticle, J. Radioanal. Nucl. Chem., 301:781–788 (2014).

[4] Carboni M., Abney C.W., Taylor–Pashow K.M.L., Vivero–Escoto J., Lin W., Uranium Sorption wif Functionalized Mesoporous Carbon Materials, Ind. Eng. Chem. Res., 52:15187−15197 (2013).

[5] Kumar J.R., Kim J.S., Lee J.Y., Yoon H.S., Solvent Extraction of Uranium(VI) and Separation of Vanadium(V) from Sulfate Solutions Using Alamine 336, J. Radioanal. Nucl. Chem., 285: 301–308 (2010).

[6] Harrison J.J., Zawadzki A., Chisari R., Wong H.K.Y., Separation and Measurement of Thorium, Plutonium, Americium, Uranium and Strontium in Environmental Matrices, J. Environ. Radioact., 102: 896–900 (2011).

[7] Sehati N., Shiri−Yekta Z., Zamani A.A., Yaftian M.R., Noshiranzadeh N., Solvent Extraction of Th (IV) and Eu (III) ions by 3, 5−di−tert−butyl−2−hydroxy−benzaldehyde Oxime from Aqueous Chloride Media, Sep. Sci. Technol., 47: 670−676 (2012).

[8] Kim C.J., Kumar J.R., Kim J.S., Lee J.Y., Yoon H.S., Solvent Extraction Studies on Uranium Using Amine Based Extractants and Recovery From Low Grade ore Leach Liquors, J. Brazil. Chem. Soc., 23: 1254−1264 (2012). 

[10] Nilchi A., Shariati Dehaghan T., Rasouli Garmarodi S., Kinetics, Isotherm and Thermodynamics for Uranium and Thorium Ions Adsorption from Aqueous Solutions by Crystalline Tin Oxide Nanoparticles, Desalination, 321: 67–71 (2013).

[11] Shiri-Yekta Z., Yaftian M.R., Nilchi A., Silica Nanoparticles Modified wif a Schiff Base Ligand: An Efficient Adsorbent for Th(IV), U(VI) and Eu(III) Ions, Korean J. Chem. Eng., 30: 1644–1651 (2013).

[12] Mola M., Nieto A., Peñalver A., Borrull F., Aguilar C., Uranium and Thorium Sequential Separation From Norm Samples by Using a SIA System, J. Environ. Radioact. 127: 82–87 (2014).

[13] Tan M., Huang C., Ding S., Li F., Li Q., Zhang L., Liu C., Li S., Highly Efficient Extraction Separation of Uranium(VI) and Thorium(IV) From Nitric Acid Solution wif di(1-methyl-heptyl) Methyl Phosphonate, Sep. Purif. Technol., 146: 192–198 (2015).

[14] Karamzadeh Z., Yaftian M.R., Shiri–Yekta Z., Nilchi A., Dolatyari L., Extraction-Separation of Eu(III)/Th(IV) Ions wif a Phosphorylated Ligand in an Ionic Liquid, Iran. J. Chem. Chem. Eng. (IJCCE), 35(2): 89–95 (2016).

[15] Koorepazan Moftakhar M., Habibi L., Yaftian M.R., Selective and Efficient Ligandless Water–in–Oil Emulsion Liquid Membrane Transport of Thorium(IV) Ions, Iran. J. Chem. Chem. Eng. (IJCCE), 35(4): 125–134 (2016).

[16] Anirudhan T.S., Bringle C.D., Rijith S., Removal of Uranium(VI) from Aqueous Solutions and Nuclear Industry Effluents Using Humic Acid−Immobilized Zirconium−Pillared Clay, J. Environ. Radioact., 101: 267–276 (2010).

[17] Sadeek S.A., Moussa E.M.M., El–Sayed M.A., Amine M.M., Abd El–Magied M.O., Uranium(VI) and Thorium(IV) Adsorption Studies on Chelating Resins Containing Pentaethylenehexamine as a Functional Group, J. Disper. Sci. Technol., 35: 926–933 (2014).

[18] Chen S.W., Guo B.L., Wang Y.L., Li Y., Song L.J., Study on Sorption of U(VI) onto Ordered Mesoporous Silicas, J. Radioanal. Nucl. Chem., 295: 1435–1442 (2013).

[19] Guerra D.L., Viana R.R., Airoldi C., Adsorption of Thorium Cation on Modified clays MTTZ Derivative, J. Hazard. Mater., 168: 1504–1511 (2009).

[20] Sana, S., Roostaazad, R., Yaghmaei, S., Biosorption of Uranium (VI) From Aqueous Solution by Pretreated Aspergillus Niger Using Sodium Hydroxide, Iran. J. Chem. Chem. Eng. (IJCCE), 34(1): 65-74 (2015).

[21] Bursali E.A., Merdivan M., Yurdakoc M., Preconcentration of Uranium(VI) and Thorium(IV) From Aqueous Solutions Using Low−Cost Abundantly Available Sorbent, J. Radioanl. Nucl. Chem., 283: 471-476 (2010).

[22] Belgacem A., Rebiai R., Hadoun H., Khemaissia S., Belmedani M., The Removal of Uranium (VI) From Aqueous Solutions onto Activated Carbon Developed From Grinded Used Tire, Environ. Sci. Pollut. Res., 21: 684-694 (2013).

[23] Mellah A., Chegrouche S., Barkat M., The Removal of Uranium (VI) From Aqueous Solutions onto Activated Carbon: Kinetic and Thermodynamic Investigations, J. Colloid. Interface. Sci., 296: 434–441 (2006).

[24] Zhang H., Wang J., Zhang B., Liu Q., Li S., Yan H., Liu L., Synthesis of a Hydrotalcite-Like Compound From Oil Shale ash and Its Application in Uranium Removal, Colloid Surface A, 444: 129–137 (2014).

[25] Qian L.J., Zhao J.N., Hu P.Z., Geng Y.X., Wu W.S., Effect of pH, Fulvic Acid and Temperature on Sorption of Th(IV) on Zirconium Oxophosphate, J. Radioanl. Nucl. Chem., 283: 653–660 (2010).

[26] Chen L., Gao X., Thermodynamic Study of Th(IV) Sorption on Attapulgite, Appl. Radiat. Isotopes, 67: 1–6 (2009).

[27] Tan X.L., Wang X.L., Fang M., Chen C.L., Sorption and Desorption of Th(IV) on Nanoparticles of Anatase Studied by Batch and Spectroscopy Methods, Colloid Surface A, 296: 109–116 (2007).

[28] Chen C.L., Wang X.K., Sorption of Th (IV) to Silica as a Function of pH, Humic/Fulvic Acid, Ionic Strength, Electrolyte Type, Appl. Radiat. Isotopes, 65: 155–163 (2007). 

[29] Zhao D.L., Feng S.J., Chen C.L., Chen S.H., Xu D., Wang X.K., Adsorption of Thorium(IV) on MX−80 Bentonite: Effect of pH, Ionic Strength and Temperature, Appl. Clay. Sci., 41: 17–23 (2008).

[31] Sharma P., Sharma M., Tomar R., Na−HEU Zeolite Synthesis for the Removal of Th(IV) and Eu(III) From Aqueous Waste by Batch Process, J. Taiwan. Inst. Chem. Eng., 44: 480−488 (2013).

[32] Xiong C., Meng Y., Yao C., Characters of Kinetic and Equilibrium of Adsorption of Eu(III) by an Cation Exchange Resin, Iran. J. Chem. Chem. Eng. (IJCCE), 30(1): 97−105 (2011).

[33] Vijayaraghavan K., Jegan J., Palanivelu K., Velan M., Biosorption of Cobalt(II) and Nickel(II) by Seaweeds: Batch and Column Studies, Sep. Purif. Technol., 44: 53–59 (2005).

[34] Naddafi K., Nabizadeh R., Saeedi R., Mahvi A.H., Vaezi F., Yaghmaeian K., Ghasri A., Nazmara S., Biosorption of Lead(II) and Cadmium(II) by Protonated Sargassumglaucescens Biomass in a Continuous Packed Bed Column, J. Hazard. Mater., 147: 785–791 (2007).

[35] Vijayaraghavan K., Jegan J., Palanivelu K., Velan M., Biosorption of Copper, Cobalt and Nickel by Marine Green Alga Ulvareticulata in a Packed Column, Chemosphere, 60: 419–426(2005).

[36] Riazi M., Keshtkar A.R., Moosavian M.A., Batch and Continuous Fixed−Bed Column Biosorption of Thorium(IV) From Aqueous Solutions: Equilibrium and Dynamic Modeling, J. Radioanal. Nucl. Chem., 301: 493–503 (2014).

[37] Han R., Wang Y., Yu W., Zou W., Shi J., Liu H., Biosorption of Methylene Blue from Aqueous Solution by Rice Husk in a Fixed−Bed Column, J. Hazard. Mater., 141: 713–718 (2007).

[38] Dolatyari L., Yaftian M.R., Rostamnia S., Removal of Uranium (VI) Ions from Aqueous Solutions Using Schiff Base Functionalized SBA-15 Mesoporous Silica Materials, J. Environ. Manage., 169: 8–17 (2016).

[39] Dolatyari L., Yaftian M.R., Rostamnia S., Adsorption Characteristics of Eu(III) and Th(IV) Ions onto Modified Mesoporous Silica SBA–15 Sorbents, J. Taiwan. Inst. Chem. Eng., 60:174−184 (2016).

[40] Zhao D., Feng J., Huo Q., Chmelka B.F., Stucky G.D., Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, J. Am. Chem. Soc., 120: 6024–6033 (1998).

[41] Hong–ping L., Chih−Yuan T., Ching–Yen L., Detailed Structural Characterizations of SBA–15 and MCM–41 Mesoporoussilicas on a High−Resolution Transmission Electron Microscope, J. Chin. Chem. Soc., 49: 981–988 (2002).

[42] Hami Dindar M., Yaftian M.R., Pilehvari M., Rostamnia S., SBA–15 Mesoporous Materials Decorated wif Organic Ligands: Use as Adsorbents for Heavy Metal Ions, J. Iran. Chem. Soc., 12: 561–572 (2015).

[43] Hami Dindar M., Yaftian M.R., Rostamnia S., Potential of Functionalized SBA–15 Mesoporous Materials for Decontamination of Water Solutions From Cr(VI), As(V) and Hg(II) Ions, J. Environ. Chem. Eng., 3: 986–995 (2015).

[44] Tavakoli H., Sepehrian H., Semnani F., Samadfam M., Recovery of Uranium From UCF Liquid Waste by Anion Exchange Resin CG-400: Breakthrough Curves, Elution Behavior and Modeling Studies, Ann. Nucl. Energy, 54: 149–153 (2013).

[45] Apiratikul R., Pavasant P., Batch and Column Studies of Biosorption of Heavy Metals by Caulerpalentillifera, Bioresource Technol., 99: 2766–2777 (2008).

[47] Ararem A., Bouzidi A., Mohamedi B., Bouras O., Modeling of Fixed-Bed Adsorption of Cs+ and Sr2+ onto Clay–Iron Oxide Composite Using Artificial Nural Network and Constant–Pattern Wave Approach, J. Radioanal. Nucl. Chem., 301: 881–887 (2014). 

[48] Ghasemi M., Keshtkar A.R., Dabbagh R., Safdari S.J., Biosorption of Uranium(VI) From Aqueous Solutions by Ca-Pretreated Cystoseiraindica Alga: Breakthrough Curves Studies and Modeling, J. Hazard. Mater., 189: 141–149 (2011).

[52] Ebrahimzadeh H., Shekari N., Tavassoli N., Amini M.M., Adineh M., Sadeghi O., Extraction of Trace Amounts of Silver on Various Amino–Functionalized Nanoporous Silicas in Real Samples, Microchim. Acta, 170:171–178 (2010).