A Novel Preparation of Zirconium Phosphate Nanoparticle and Its Application in Multi-Component Reactions

Document Type: Research Article

Author

Young Researchers and Elite Club, Shahreza Branch, Islamic Azad University, Shahreza, I.R. Iran

Abstract

A novel method for the preparation of α-zirconium phosphate (ZrP) nanoparticles as an eco-friendly and recyclable heterogeneous catalyst was studied. Polyethylene glycol (PEG) was used as the organic matrix which produced a better dispersion of ZrP nanoparticles. The catalyst was characterized by several physicochemical techniques such as ICP-OES, XRD, TPD-NH3, pyridine-FTIR, BET, FTIR, TGA, SEM, and TEM. The acidic property of ZrP was studied in the synthesis of 2-amino-3-cyanopyridines. When the hexagonal ZrP nanoparticles were used as the catalyst, excellent yields were obtained. The catalyst was recovered and reused at least eight times without significant loss in its catalytic activity.

Keywords

Main Subjects


1] Sinhamahapatra A., Sutradhar N., Roy B., Tarafdar A., Bajaj H.C. and Panda A.B., Mesoporous Zirconium Phosphate Catalyzed Reactions: Synthesis of Industrially Important Chemicals in Solvent-Free Conditions, Appl. Catal., A, 385(1–2): 22-30 (2010).

[2] Tarafdar A., Panda A.B., Pradhan N.C. and Pramanik P., Synthesis of Spherical Mesostructured Zirconium Phosphate with Acidic Properties, Microporous Mesoporous Mater., 95(1-3): 360-365 (2006).

[4] Khare S., Chokhare R., Shrivastava P. and Kirar J., Solvent-free Liquid Phase Oxidation of Styrene over Iron Zirconium Phosphate Using Tert-butylhydroperoxide as an Oxidant, Indian J. Chem., 54: 1032-1038 (2015).

[6] Diaz A., Gonzalez M.L., Perez R.J., David A., Mukherjee A., Baez A., Clearfield A. and Colon J.L., Direct Intercalation of Cisplatin into Zirconium Phosphate Nanoplatelets for Potential Cancer Nanotherapy, Nanoscale, 5(23): 11456-11463 (2013).

[7] Ziarelli F., Casciola M., Pica M., Donnadio A., Aussenac F., Sauvee C., Capitani D. and Viel S., Dynamic Nuclear Polarisation NMR of Nanosized Zirconium Phosphate Polymer Fillers, Chem. Commun., 50(70): 10137-10139 (2014).

[9] Saxena V., Diaz A., Clearfield A., Batteas J.D., Hussain M.D., Zirconium Phosphate Nanoplatelets: a Biocompatible Nanomaterial for Drug Delivery to Cancer, Nanoscale, 5(6): 2328-2336 (2013).

[10] Tahara S., Takakura Y., Sugahara Y., Preparation of Alpha-Zirconium Phosphate from Fluorozirconate and Phosphoric Acid by Liquid-phase Deposition, Chem. Lett., 41(5): 555-557 (2012).

[11] Gan H., Zhao X., Song B., Guo L., Zhang R., Chen C., Chen J., Zhu W., Hou Z., Gas Phase Dehydration of Glycerol to Acrolein Catalyzed by Zirconium Phosphate, Chin. J. Catal., 35(7): 1148-1156 (2014).

[12] Shuai M., Mejia A.F., Chang Y.-W., Cheng Z., Hydrothermal Synthesis of Layered α-zirconium Phosphate Disks: Control of Aspect Ratio and Polydispersity for Nano-architecture, Cryst. Eng. Comm., 15(10): 1970-1977 (2013).

[13] Feng Y., He W., Zhang X., Jia X., Zhao H., The Preparation of Nanoparticle Zirconium Phosphate, Mater. Lett., 61(14–15): 3258-3261 (2007).

[14] Hajipour A.R., Karimi H., Synthesis and Characterization of Hexagonal Zirconium Phosphate Nanoparticles, Mater. Lett., 116(0): 356-358 (2014).

[15] Díaz A., Saxena V., González J., David A., Casañas B., Carpenter C., Batteas J.D., Colón J.L., Clearfield A., Hussain M.D. Zirconium Phosphate Nano-Platelets: A Novel Platform for Drug Delivery in Cancer Therapy, Chem. Commun., 48(12): 1754-1756 (2012).

[16] Gupta V.K., Pathania D., Singh P., Rathore B.S., Chauhan P., Cellulose Acetate-zirconium (IV) Phosphate Nano-composite with Enhanced Photo-Catalytic Activity, Carbohydr. Polym., 95(1): 434-440 (2013).

[17] Yu S., Gao X., Baigude H., Hai X., Zhang R., Gao X., Shen B., Li Z., Tan Z., Su H., Inorganic Nanovehicle for Potential Targeted Drug Delivery to Tumor Cells, Tumor Optical Imaging, ACS Appl. Mater. Interfaces, 7(9): 5089-5096 (2015).

[18] Topkaya R., Kurtan U., Baykal A., Toprak M.S., Polyvinylpyrrolidone (PVP)/MnFe2O4 Nanocomposite: Sol–Gel Autocombustion Synthesis and its Magnetic Characterization, Ceram. Int., 39(5): 5651-5658 (2013).

[19] Tang M., Yang T., Zhang Y., A Brief Review on α-zirconium Phosphate Intercalation Compounds and Nano-composites, Sci. Chin. Technol. Sci., 1-6 (2015).

[20] Rotstein B.H., Zaretsky S., Rai V., Yudin A.K., Small Heterocycles in Multicomponent Reactions, Chem. Rev., 114(16): 8323-8359 (2014).

[21] Sarrafi Y., Eghtedari M., Four-Component Reaction between Ethyl Benzoylacetate, Hydroxylamine, Aldehydes and Malononitrile: Synthesis of Isoxazol-5(2H)-Ones, Iran. J. Chem. Chem. Eng. (IJCCE), 35(2): 9-13 (2016).

[22] Sarda S., Kale J., Wasmatkar S., Kadam V., Ingole P., Jadhav W., Pawar R., An Efficient Protocol for the Synthesis of 2-amino-4,6-diphenylpyridine-3-Carbonitrile Using Ionic Liquid Ethylammonium Nitrate, Mol. Divers, 13(4): 545-549 (2009).

[23] Ayvaz S., Çankaya M., Atasever A., Altuntas A., 2-Amino-3-cyanopyridine Derivatives as Carbonic Anhydrase Inhibitors, J. Enzyme Inhib. Med. Chem., 28(2): 305-310 (2013).

[24] Gouda M.A., Berghot M.A., Abd El Ghani G.E., Khalil A.E.-G.M., Chemistry of 2-Amino-3-Cyanopyridines, Synth. Commun., 44(3): 297-330 (2013).

[25] Shi F., Tu S., Fang F., Li T., One-pot Synthesis of 2-Amino-3-cyanopyridine Derivatives under Microwave Irradiation without Solvent, Arkivoc, 2005(1): 137-142 (2005).

[26] Tang J., Wang L., Yao Y., Zhang L., Wang W., One-pot Synthesis of 2-amino-3-cyanopyridine Derivatives Catalyzed by Ytterbium Perfluorooctanoate [Yb(PFO)3], Tetrahedron Lett., 52(4): 509-511 (2011).

[28] Ghorbani-Vaghei R., Toghraei-Semiromi Z., Karimi-Nami R., One-pot Synthesis of 2-amino-3-Cyanopyridine Derivatives under Solvent-free Conditions, C. R. Chim., 16(12): 1111-1117
(2013).

[29] Dissanayake A.A., Staples R.J., Odom A.L., Titanium-Catalyzed, One-Pot Synthesis of 2-Amino-3-cyano-pyridines, Adv. Synth. Catal., 356(8): 1811-1822 (2014).

[30] Girgis A.S., Kalmouch A., Hosni H.M. Synthesis of Novel 3-Pyridinecarbonitriles with Amino Acid Function and Their Fluorescence Properties, Amino Acids, 26(2): 139-146 (2004).

[31] Okuhara T., Water-Tolerant Solid Acid Catalysts, Chem. Rev., 102(10): 3641-3666 (2002).

[32] Parmar N.J., Parmar B.D., Sutariya T.R., Kant R., Gupta V.K., An Efficient Synthesis of Some Thiopyranopyrazole-Heterocycles via Domino Reaction in a Brønsted Acidic Ionic Liquid, Tetrahedron Lett., 55(44): 6060-6064 (2014).

[33] Tamaddon F., Khoobi M., Keshavarz E., (P2O5/SiO2): A Useful Heterogeneous Alternative for the Ritter Reaction, Tetrahedron Lett., 48(21): 3643-3646 (2007).

[34] Donnadio A., Pica M., Capitani D., Bianchi V., Casciola M., Layered Zirconium Alkylphosphates: Suitable Materials for Novel PFSA Composite Membranes with Improved Proton Conductivity and Mechanical Stability, J. Membr. Sci., 462(0): 42-49 (2014).

[36] Khaksar S., Yaghoobi M., A Concise and Versatile Synthesis of 2-Amino-3-Cyanopyridine Derivatives in 2,2,2-Trifluoroethanol, J. Fluorine Chem., 142(0): 41-44 (2012).

[38] Mansoor S., Aswin K., Logaiya K., Sudhan P., Malik S., Aqueous Media Preparation of 2-Amino-4,6-Diphenylnicotinonitriles Using Cellulose Sulfuric Acid as an Efficient Catalyst, Res. Chem. Intermed., 40(2): 871-885 (2014).

[39] Niknam K., Jamali A., Tajaddod M., Deris A., Synthesis of 2-Amino-4,6-diarylnicotinonitriles Using Silica-Bound N-Propyl Triethylenetetramine Sulfamic Acid as a Recyclable Solid Acid Catalyst, Chin. J. Catal., 33(7–8): 1312-1317 (2012).