• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
Articles in Press
Current Issue
Journal Archive
Volume Volume 36 (2017)
Issue Issue 6
Issue Issue 5
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 35 (2016)
Volume Volume 34 (2015)
Volume Volume 33 (2014)
Volume Volume 32 (2013)
Volume Volume 31 (2012)
Volume Volume 30 (2011)
Volume Volume 29 (2010)
Volume Volume 28 (2009)
Volume Volume 27 (2008)
Volume Volume 26 (2007)
Volume Volume 25 (2006)
Volume Volume 24 (2005)
Volume Volume 23 (2004)
Volume Volume 22 (2003)
Volume Volume 21 (2002)
Volume Volume 20 (2001)
Volume Volume 19 (2000)
Volume Volume 18 (1999)
Volume Volume 17 (1998)
Volume Volume 16 (1997)
Volume Volume 15 (1996)
Volume Volume 14 (1995)
Volume Volume 13 (1994)
Volume Volume 12 (1993)
Volume Volume 11 (1992)
Volume Volume 10 (1991)
Volume Volume 9 (1990)
Volume Volume 8 (1989)
Volume Volume 7 (1988)
Volume Volume 6 (1987)
Mandanipour, V., Noroozifar, M., Modarresi- Alam, A., Khorasani-Motlagh, M. (2017). Fabrication and Characterization of a Conductive Proton Exchange Membrane Based on Sulfonated Polystyrenedivinylbenzene Resin-Polyethylene (SPSDR-PE): Application in Direct Methanol Fuel Cells. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36(6), 151-162.
Valiollah Mandanipour; Meissam Noroozifar; Ali Reza Modarresi- Alam; Mozhgan Khorasani-Motlagh. "Fabrication and Characterization of a Conductive Proton Exchange Membrane Based on Sulfonated Polystyrenedivinylbenzene Resin-Polyethylene (SPSDR-PE): Application in Direct Methanol Fuel Cells". Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36, 6, 2017, 151-162.
Mandanipour, V., Noroozifar, M., Modarresi- Alam, A., Khorasani-Motlagh, M. (2017). 'Fabrication and Characterization of a Conductive Proton Exchange Membrane Based on Sulfonated Polystyrenedivinylbenzene Resin-Polyethylene (SPSDR-PE): Application in Direct Methanol Fuel Cells', Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36(6), pp. 151-162.
Mandanipour, V., Noroozifar, M., Modarresi- Alam, A., Khorasani-Motlagh, M. Fabrication and Characterization of a Conductive Proton Exchange Membrane Based on Sulfonated Polystyrenedivinylbenzene Resin-Polyethylene (SPSDR-PE): Application in Direct Methanol Fuel Cells. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 2017; 36(6): 151-162.

Fabrication and Characterization of a Conductive Proton Exchange Membrane Based on Sulfonated Polystyrenedivinylbenzene Resin-Polyethylene (SPSDR-PE): Application in Direct Methanol Fuel Cells

Article 15, Volume 36, Issue 6 - Serial Number 86, November and December 2017, Page 151-162  XML PDF (652 K)
Document Type: Research Article
Authors
Valiollah Mandanipour 1; Meissam Noroozifar 2; Ali Reza Modarresi- Alam3; Mozhgan Khorasani-Motlagh4
1Department of Applied Chemistry, University of Gonabad, Gonabad, I.R. IRAN
2Department of Applied Chemistry, University of Sistan and Baluchestan, P.O. Box 98135-674 Zahedan, I.R. IRAN
3Polymer Research Laboratory, University of Sistan and Baluchestan, Zahedan, I.R. IRAN
4Department of Inorganic Chemistry, University of Sistan and Baluchestan, Zahedan, I.R. IRAN
Abstract
A novel proton exchange membrane has been prepared using sulfonated poly(styrene-divinylbenzene) resin(SPSDR)–polyethylene(PE). The membrane is characterized by FT-IR, SEM and TGA/DSC. Water uptake, oxidative resistance, ionic conductivity and methanol permeability are measured to evaluate its performance in a direct methanol fuel cell. The on-set degradation temperature of the SPSDR is above 120°C. The membranes were confirmed to retain 1–5% water vapor at 80–140 °C in the air due to the hydrophily of highly sulfonated polystyrene. The ionic conductivity and permeability of the membrane to methanol was found to increase with temperature without extra humidity supply.A direct methanol fuel cell was designed and assembled with the suggested SPSDR-PE membrane. The effect of some experimental factors such as temperature, methanol concentration, and flow rate as well as NaOH concentration on the electrical performances of fuel cells was studied and optimized.
Keywords
Sulfonated polystyrene; Polyethylene; Proton exchange membrane; Direct methanol fuel cell; Polymer composites
Main Subjects
Environmental Chemistry; Membrane Science & Technology
References
[1] Zhang L., Chae S-R., Hendren Z., Park J-S., Wiesner M.R., Recent Advances in Proton Exchange Membranes for Fuel Cell Applications, Chem. Eng. J., 204: 87–97 (2012).

[2] Xu J., Ma L., Han H., Ni H., Wang Z., Zhang H., Synthesis and Properties of a Novel Sulfonated  Poly(arylene ether ketone sulfone) Membrane with a High β-value for Direct Methanol Fuel Cell Applications, Electrochim. Acta, 146: 688–696 (2014).

[3] Kim D.J., Lee H.J., Nam S.Y., Sulfonated Poly(arylene ether sulfone) Membranes Blended with Hydrophobic Polymers for Direct Methanol Fuel Cell Applications, Int. J. Hydrogen Energy, 39: 17524-17532 (2013),.

[4] Zeng Q.H., Liu Q.L., Broadwell I., Zhu A.M., Xiong Y., Tu X.P., Anion Exchange Membranes Based on Quaternized Polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene for Direct Methanol Alkaline Fuel Cells, J. Membr. Sci., 349: 237–243 (2010).

[5] Sherazi T.A., Sohn J.Y., Lee Y.M., Guiver M.D., Polyethylene-based Radiation Grafted Anion-Exchange Membranes for Alkaline Fuel Cells, J. Membr. Sci., 441: 148–157 (2013).

[6] Liu W., Cai W., Liu C., Sun Sh., Xing W., Magnetic Coupled Passive Direct Methanol Fuel Cell: Promoted CO2 Removal and Enhanced Catalyst Utilization, Fuel, 139: 308-313 (2015).

[7] Liang X., Pan G., Xu L., Wang J., A Modified Decal Method for Preparing the Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cells, Fuel, 139: 393-400 (2015).

[8] Li J., Wang J., Chen Xi., Lv Zh., Chen T., Wang T., A Highly Conductive Proton Exchange Membrane for High Temperature Fuel Cells Based on Poly(5-vinyltetrazole) and Sulfonated Polystyrene, Solid State Ionics, 255: 128-134 (2014).

[9] Cho M. K., Lee D-N., Kim Y-Y., Han J., Kim H-J., Cho E.A., Lim T-H., Henkensmeier D., Yoo S.J., Sung Y-E., Park S., Jang J.H., Analysis of the Spatially Distributed Performance Degradation of a Polymer Electrolyte Membrane Fuel Cell Stack, Int. J. Hydrogen Energy, 39: 16548-16555 (2014).

[10] Liu J., Laghrouche S., Ahmed F-Sh., Wack M., PEM Fuel Cell Air-Feed System Observer Design for Automotive Applications: An Adaptive Numerical Differentiation Approach, Int. J. Hydrogen Energy, 39, 17210-17221(2014).

[11] Hassan M.A., Kamarudin S.K., Loh K.S., Daud W.R.W., Sensors for Direct Methanol Fuel Cells, Renew. Sust. Energ. Rev., 40: 1060-1069 (2014).

[12] Luo Y., Jiao K., Jia B., Elucidating the Constant Power, Current and Voltage Cold Start Modes of Proton Exchange Membrane Fuel Cell, Int. J. Heat. Mass. Tran., 77: 489–500(2014).

[13] Ogden J.M., Steinbugler M.M., Kreutz Th.G., A Comparison of Hydrogen, Methanol and Gasoline as Fuels for Fuel Cell Vehicles: Implications for Vehicle Design and Infrastructure Development, J. Power Sources, 79: 143–168(1999).

[14] Hong-jun N., Cheng-jin Zh., Xing-xing W., Su-yang M., Ping L., Performance of Special-Shaped Direct Methanol Fuel Cell with Sol–Gel Flux Phase, J. Fuel Chem. Technol, 38(5): 604-609 (2010).

[15] Mekhilef S., Saidur R., Safari A., Comparative Study of Different Fuel Cell Technologies, Renew. Sust. Energ. Rev., 16: 981–989 (2012).

[16] Wang Y., Geder J., Schubert J.M., Dahl R., Pasel J., Peters R., Optimization of Adsorptive Desulfurization Pocess of Jet Fuels for Application in Fuel Cell Systems, Fuel Process. Technol., 95: 144–153(2012).

[17] Wei X., Yates M.Z., Nafion®/polystyrene-b-poly(ethylene-ran-butylene)-b-polystyrene Composite Membranes with Electric Field-Aligned Domains for Improved Direct Methanol Fuel Cell Performance, Power Sources, 195: 736–743(2010).

[18] Perrot C., Gonon L., Marestin C., Gebel G., Hydrolytic Degradation of Sulfonated Polyimide Membranes for Fuel Cells, J. Membr. Sci., 379: 207-214 (2011).

[19] Li Q., Jensen J.O., Savinell R.F., Bjerrum N.J., High Temperature Proton Exchange Membranes Based on Polybenzimidazoles for Fuel Cells, Prog. Polym. Sci., 34: 449–477(2009).

[20] Zhong S., Cui X., Dou S., Liu W., Gao Y., Hong B., Improvement in Silicon-Containing Sulfonated Polystyrene/Acrylate Membranes by Blending and Crosslinking, Electrochim. Acta, 55: 8410–8415 (2010).

[21] Abdrashitov E.F., Bokun V.Ch., Kritskaya D.A., Sanginov E.A., Ponomarev A.N., Dobrovolsky Y.A., Synthesis and Properties of the PVDF-Based Proton Exchange Membranes with Incorporated Cross-Linked Sulphonatedpolystyrene for Fuel Cell, Solid State Ionics, 251: 9-12 (2013).

[22] Díaz M., Ortiz A., Ortiz I., Progress in the Use of Ionic Liquids as Electrolyte Membranes in Fuel Cells, J. Membr. Sci., 469: 379-396 (2014).

[23] Díaz M., Ortiz A., Isik M., Mecerreyes D., Ortiz I., Highly Conductive Electrolytes Based on Poly([HSO3 BVIm][TfO])/[HSO3-BMIm][TfO] Mixtures for Fuel Cell Applications, Int. J. Hydrogen Energy, 40(34): 11294–11302 (2015).

[24] Ahmad H., Kamarudin S.K., Hasran U.A., Daud W.R.W., Overview of Hybrid Membranes for Direct-Methanol Fuel-Cell Applications, Int. J. Hydrogen Energy, 35: 2160-2175 (2010).

[25] Xie Z., Song C., Andreaus B., Navessin T., Shi Z., Zhang J., Holdcroft S., Discrepancies in the Measurement of Ionic Conductivity of PEMs Using Two- and Four-Probe AC Impedance Spectroscopy, J. Electrochem. Soci., 153(10) : 173-178 (2006).

[26] Khorasani-Motlagh M., Noroozifar M., Ekrami-Kakhki M-S, Investigation of the Nanometals (Ni and Sn) in Platinum Binary and Ternary Electrocatalysts for Methanol Electrooxidation, 0i Int. J. Hydrogen Energy, 36: 11554-11563 (2011).

[27] Ahmad H., Kamarudin S.K., Hasran U.A., Daud W.R.W., A Novel Hybrid Nafion-PBI-ZP Membrane for Direct Methanol Fuel Cells, Int. J. Hydrogen Energy, 36: 14668-14677 (2011).

[28] Wang C.-H., Chen C.-C., Hsu H.-C., Du H.-Y., Chen C.-P., Hwang J.-Y., Chend L.C., Shih H.C., Stejskal J., Chen K.H., Low Methanol-Permeable Polyaniline/Nafion Composite Membrane for Direct Methanol Fuel Cells, J. Power Sources, 190: 279-284 (2009).

[29] Mishraa A.K., Boseb S., Kuilab T., Kimc N.H., Lee J.H., Silicate-Based Polymer-Composite Membranes for Polymer Electrolyte Membrane Fuel Cells, Prog. Polym. Sci., 37: 842– 869(2012).

[30] Mehdi S., Khaleghi H., Mirzaei M., Parametric Study of Operation and Performance of a PEM Fuel Cell Using Numerical Method, Iran. J. Chem. Chem. Eng. (IJCCE), 27(2): 1-12 (2008).

[31] Najmi A., Rowshanzamir S., Parnian M., Investigation of NaOH Concentration Effect in Injected Fuel on the Performance of Passive Direct Methanol Alkaline Fuel Cell with Modified Cation Exchange Membrane, Energy, 94: 589-599(2016).

[32] Ni H-J., Zhang Ch-J., Wang Xi-Xi., Ma Su-Y., Liao P., Performance of Special-Shaped Direct Methanol Fuel Cell with Sol-Gel Flux Phase, J. Fuel. Chem. Technol., 38: 604-609(2010).

[33] Chen C.Y., Garnica-Rodriguez J.I., Duke M.C., Dalla Costa R.F., Dicks A.L., Diniz da Costa J.C., Nafion/Polyaniline/Silica Composite Membranes for Direct Methanol Fuel Cell Application, J. Power Sources, 166: 324-330(2007).

Statistics
Article View: 271
PDF Download: 37
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

web page hit counter

Journal Management System. Designed by sinaweb.