SrFeO3-δ Assisting with Pd Nanoparticles on the Performance of Alcohols Catalytic Oxidation

Document Type: Research Article


Department of Chemistry, University of Sistan and Baluchestan, P.O. Box 98135-674 Zahedan, I.R. IRAN


Current catalysts for the alcohol oxidation in fuel cells (typically noble metals-based) are susceptible to poisoning with intermediates like CO. Hence we decided to find superseded catalysts for methanol oxidation based on incorporation of mixed oxides. In this research, a nano-size perovskite SrFeO3 (SrFeO3NPs) was synthesized by a rapid co-precipitation method assisted with ultrasonic and characterized by XRD, FT-IR, SEM and EDX techniques. A modified glassy carbon electrode with Pd nanoparticles (PdNPs) and SrFeO3NPs dispersed into the appropriate amount of chitosan (CH) polymer as a multifunctional catalyst was prepared and its catalytic activity toward alcohols (C1 - C3) oxidation was investigated. Based on the electrochemical studies, the PdNPs-SrFeO3NPs-CH nanocomposite showed considerable activity for alcohols (C1 - C3) oxidation in comparison to PdNPs-CH and SrFeO3NPs-CH. A direct methanol fuel cell was designed, assembled and tested with suggested PdNPs-SrFeO3NPs-CH nanocomposite under several different conditions. The effect of experimental parameters (temperature; methanol concentration; flow rate) as well as NaOH concentration) on the electrical performances of the fuel cell were studied and optimized.


Main Subjects

[1] Mirabi E., Pishvaie M.R., Abbasian M., Model Reduction of a Solid Oxide Fuel Cell (SOFC) for Control Purposes, Iran. J. Chem. Chem. Eng. (IJCCE), 32 (3): 91-105 (2013).

[2] Umeda M., Sugii H., Uchida I., Alcohol Electrooxidation at Pt and Pt–Ru Sputtered Electrodes under Elevated Temperature and Pressurized Conditions, J. Power Sources 179 (2):489–496 (2008).

[3] Santasalo A., Vidal-Iglesias F.J., Solla-Gullón J., Berná A., Kallio T., Feliu J.M., Electrooxidation of Methanol and 2-Propanol Mixtures at Platinum Single Crystal Electrodes, Electrochim. Acta 54 (26):6576–6583 (2009).

[4] Seweryn J., Lewera A., Electrooxidation of Ethanol on Carbon-Supported Pt–Pd Nanoparticles, J. Power Sources 205 (1):264–271 (2012).

[5] Wang Q., Lu X., Xin Q., Sun G., Polyol-Synthesized Pt2.6Sn1Ru0.4/C as a High-Performance Anode Catalyst for Direct Ethanol Fuel Cells, Chin. J. Catal. 35 (8):1394–1401 (2014).

[6] Serov A.A., Cho S.Y., Han S., Min M., Chai G., Nam K.H., Kwak C., Modification of Palladium-Based Catalysts by Chalcogenes for Direct Methanol Fuel Cells, Electrochem. Commun. 9 (8):2041–2044 (2007).

[7] Su Y.Z., Zhang M.Z., Liu X.B., Li Z.Y., Zhu X.C., Xu C.W., Jiang S.P., Development of Au Promoted Pd/C Electrocatalysts for Methanol, Ethanol and Isopropanol Oxidation in Alkaline Medium, Int. J. Electrochem. Sci., 7(5): 4158–4170 (2012).

[9] Abbasi R., Farhadi Kh., Banisaeid S., Nowroozi Pesyan N., Jamali A., Rahmani F., Electrosynthesized Polytyramine-Copper Oxalate Nanocomposite on Copper Electrode for Electrocatalytic Oxidation of Methanol in Alkaline Medium, Chin. J. Catal. 35 (7):1098–1104 (2014).

[10] Lee J.M., Han S.B., Lee Y.W., Song Y.J., Kim J.Y., Park K.W., RuO2–SnO2 Nanocomposite Electrodes for Methanol Electrooxidation, J. Alloy Compd., 506(1):57–62 (2010).

[11] Li C.L., Wang C.L., Lin Y.C., Pd-Integrated Lanthanum-Transition Metal Perovskites for Methanol Partial Oxidation, Catal. Today 174 (1):135–140 (2011).

[12] Varma A., Deshpande K., Mukasyan A., High Throughput Evaluation of Perovskite-BasedAnode Catalysts for Direct Methanol Fuel Cells, J. Power Sources, 158 (1):60-68 (2006).

[13] Mukasyan A.S., Lan A., Complex SrRuO3−Pt and LaRuO3−Pt Catalysts for Direct Alcohol Fuel Cells. Ind. Eng. Chem. Res. 47 (1):8989-8994 (2008).

[14] Noroozifar M., Yavari Z., Khorasani-Motlagh M., Ghasemi T., Rohani-Yazdi S.H., Mohammadi M., Fabrication and Performance Evaluation of a Novel Membrane Electrode Assembly for DMFCs, RSC Adv., 6 (1):563-574 (2016).

[15] Yavari Z., Noroozifar M., Khorasani-Motlagh M., Multifunctional Catalysts Toward Methanol Oxidation in Direct Methanol Fuel Cell, J. Appl. Electrochem. 45 (5):439-451 (2015).

[16] Noroozifar M., Khorasani-Motlagh M., Yavari Z., Effect of Nano-TiO2 Particles on the Corrosion Behavior of Chromium-Based Coatings, Int. J. Nanosci. Nanotechnol., 9 (2):85-94 (2013).

[17] Xu Ch., Cheng L., Shen P., Liu Y., Methanol and Ethanol Electrooxidation on Pt and Pd Supported on Carbon Microspheres in Alkaline Media, Electrochem. Commun., 9 (5):997–1001 (2007).

[18] Honda K., Yoshimura M., Rao T.N., Tryk D.A., Fujishima A., Yasuib K., Sakamoto Y., Nishio K., Masuda H., Electrochemical Properties of Pt-Modified Nano-Honeycomb Diamond Electrodes, J. Electroanal. Chem., 514 (1-2):35–50 (2001).

[19] Noroozifar M., Khorasani-Motlagh M., Ekrami-Kakhki M.S., Khaleghian-Moghadam R., Electrochemical Investigation of Pd Nanoparticles and MWCNTs Supported Pd Nanoparticles-Coated Electrodes for Alcohols (C1–C3) Oxidation in Fuel Cells, J. Appl. Electrochem., 44 (2):233–243 (2014).

[21] Venkateswara RaO Ch., Singh S.K., Viswanathan B., Electrochemical performance of nano-SiC prepared in thermal plasma. Indian. J. Chem. A 47: (11)1619-1625 (2008).

[22] Wang H., Xu C., Cheng F., Jiang S., Pd Nanowire Arrays as Electrocatalysts for Ethanol Electrooxidation, Electrochem. Commun., 9 (1): 1212–1216 (2007).

[23] Yavari Z., Noroozifar M., Khorasani-Motlagh M., The Improvement of Methanol Oxidation Usingnano- Electrocatalysts. J. Exp. Nanosci. 11(10):798-815 (2016).

[24] Chen Y., Bai L., Zhou C., Lee J.M., Yang Y., Palladium-Catalyzed Aerobic Oxidation of 1-Phenylethanol with an Ionic Liquid Additive, Chem. Commun. 47 (22): 6452-6454 (2011).

[25] Alvarez G.F., Mamlouk M., Senthil Kumar S.M., Scott K., Preparation and Characterisation of Carbon-Supported Palladium Nanoparticles for Oxygen Reduction in Low Temperature PEM Fuel Cells, J. Appl. Electrochem., 41 (8):925-937 (2011).

[26] Barakat N.A.M., Motlak M., Kim B.S., El-Deen A.G., Carbon Nanofibers Doped by NixCo1−x Alloy Nanoparticles as Effective and Stable Non Precious Electrocatalyst for Methanol Oxidation in Alkaline Media, J. Mol. Catal. A Chem., 394:177–187 (2014).

[27] Zhou C., Wang H., Liang J., Peng F., Yu H., Yang J., Effects of RuO2 Content in Pt/RuO2/CNTs Nanocatalyst on the Electrocatalytic Oxidation Performance of Methanol, Chin. J. Catal., 29(11): 1093–1098 (2008).

[28] Ganesan R., Lee J.S., An Electrocatalyst for Methanol Oxidation Based on Tungsten Trioxide Microspheres and Platinum, J. Power Sources, 157(1): 217–221 (2006).

[29] Singh R.N., Sharma T., Singh A., Anindita, Mishra D., Tiwari S.K., Perovskite-type La2−xSrxNiO4 (0 ≤ x ≤ 1) as Active Anode Materials for Methanol Oxidation in Alkaline Solutions, Electrochim. Acta, 53 (5): 2322–2330 (2008).

[30] Léger J.M., Preparation and Activity of Mono- or Mi-metallic Nanoparticles for Electrocatalytic Reactions, Electrochim. Acta, 50(15): 3123–3129 (2005).

[31] Miao F., Tao B., Sun L., Liu T., You J., Wang L., Chu P.K., Preparation and Characterization of Novel Nickel–Palladium Electrodes Supported by Silicon Microchannel Plates for Direct Methanol Fuel Cells, J. Power Sources 195 (1):146–150 (2010).

[32] Raghuveer V., Thampi K.R., Xanthopoulos N., Mathieu H.J., Viswanathan B., Rare Earth Cuprates as Electrocatalysts for Methanol Oxidation, Solid State Ionics, 140:263–274 (2001).

[33] Tripković A.V., Popović K.D., Lović J.D., Jovanović V.M., Kowal A., Methanol Oxidation at Platinum Electrodes in Alkaline Solution: Comparison between Supported Catalysts and Model Systems, J. Electroanal. Chem., 572 (1):
119-128 (2004).

[35] Becerık İ., Sūzer Ş., Kadirgan F., Electrooxidation of Methanol on Doped Polypyrrole Films in Acidic Media, J. Electroanal. Chem., 502:118–125 (2001).

[37] Azizi S.N., Ghasemi Sh., Salek Gilani N., An Electrode with Ni (II) Loaded Analcime Zeolite Catalyst for the Electrooxidation of Methanol, Chin. J. Catal., 35:383–390 (2014).

[38] Hou H., Wang S., Jin W., Jiang Q., Sun L., Jiang L., Sun G., KOH Modified Nafion112 Membrane for High Performance Alkaline Direct Ethanol Fuel Cell, Int. J. Hydrogen Energy, 36 (3):5104-5109 (2011).

[39] Kim J., Momma T., Osaka T., Cell Performance of Pd–Sn Catalyst in Passive Direct Methanol Alkaline Fuel Cell Using Anion Exchange Membrane, J. Power Sources, 189 (2):999–1002 (2009).

[40] Chen Y., Zhuang L., Lu J., Non-Pt Anode Catalysts for Alkaline Direct Alcohol Fuel Cells, Chin. J. Catal, 28 (10):870-874 (2007).

[41] Miyazaki K., Sugimura N., Matsuoka K., Iriyama Y., Abe T., Matsuoka M., Ogumi Z., Perovskite-Type Oxides La1-xSrxMnO3 for Cathode Catalysts in Direct Ethylene Glycol Alkaline Fuel Cells, J. Power Sources, 178 (2):683-686 (2008).

[42] Yu E.H., Krewer U., Scott K., Principles and Materials Aspects of Direct Alkaline Alcohol Fuel Cells, Energies, 3 (8):1499-1528 (2010).

[43] Gūlzow E., Alkaline Fuel Cells: A Critical View, J. Power Sources, 61 (1-2):99-104 (1996)

[44] Wang Y., Li L., Hu L., Zhuang L., Lu J., Xu B., A Feasibility Analysis for Alkaline Membrane Direct Methanol Fuel Cell: Thermo-Dynamic Disadvantages Versus Kinetic Advantages, Electrochem. Commun., 5 (8):662–666 (2003).