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ABSTRACT: Hybrid MMCs are a new class of materials that exhibit superior characteristics and 

functional response when compared to monolithic alloys and mono-reinforced MMCs, and thus have 

tremendous potential for widespread application in modern industrial and engineering applications. 

Since the manufacturing fraternity is proliferating, a cyclic evaluation of understanding the behavior 

of hybrid MMCs and their evolution is needed. Therefore, to address this necessity, this paper 

presents a detailed review of hybrid MMC manufacturing methods, materials (matrix and 

reinforcement) used, physicomechanical, tribological, and corrosion properties, and challenges 

associated with hybrid MMCs. This retrospective investigation presents the state of the art of hybrid 

MMC materials in the categories involving matrix materials and their alloys, ceramics 

reinforcements and secondary reinforcements, and the applications and formation of microstructures. 

This paper also discussed the overview and the status of various matrix and reinforcement materials 

in manufacturing hybrid MMCs using different fabrication methods. Further, the significant 

challenges associated with the fabrication of hybrid MMCs using different manufacturing methods, 

such as distribution of reinforcement, wettability, and other common limitations identified in the literature, 

are presented. This paper provides a broad-spectrum attitude on hybrid MMCs techniques, 

challenges, and future research directions. 
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INTRODUCTION 

Modern industries are developing novel manufacturing 

processes and reinforcing materials to address the 

challenging and competitive criteria, specific material 

qualities, and obsolescence of high-strength-lightweight 

materials. In this unique circumstance, metal matrix 

composites are lightweight, high-strength materials 

generated by diverse technical manufacturing processes 

such as liquid, solid, and vapor state processing [1–3].  

In terms of wear resistance, specific strength, stiffness, 

specific elastic modulus, thermal conductivity, and creep 

resistance, MMCs outperform monolithic materials [4]. 

Adding a high-performance material as a reinforcement 

phase to a traditional engineering material produces  

a composite material with unique properties that cannot 

attain with a monolithic material. 

Fundamentally, MMCs are a newer class of well-

established engineering materials composed of a ductile 

metallic alloy impregnated with strong particles, fibres, or 

whiskers such as Gr, SiC, boron, and Al2O3, TiB2, and 

other refractory metals [5]. Fig. 1 shows the classification 

of MMCs and their qualities, whilst Fig. 2 shows 

microstructural pictures of fibres, whiskers, and particle-

enhanced MMCs. Due to reinforced particles in ductile 

metal composites, MMCs offer inescapable applications  

in aviation, auto, military, sports, bicycle frames, ground 

transportation, marine, electronics, and infrastructure 

industries [6–9]. 

Over the last four decades, tremendous research on 

MMCs has been taking place to address significant 

challenges such as cost-effective manufacturing, 

constituent compositions, characterization, and control  

of the interface between matrix and reinforcement phases. 

The widespread use of MMCs has possibly sparked more 

significant research into further advancements in the 

element's composition of composites. Because traditional 

MMCs with mono-reinforced materials such as micron-

sized particulates or fibers can attain good mechanical and 

physical properties at high reinforcement content, their 

ductility and toughness properties deteriorate dramatically 

with increasing reinforcement content. 

Recent research has shown that adding nano-

reinforcements can significantly improve matrix alloys' 

mechanical and physical properties without impairing their 

ductility and toughness [10, 11]. Due to the grain size 

strengthening, adding nano TiC particles to Al alloys 

improves elongation and hardness but not tensile strength [12]. 

A similar effect in an Al-Si casting alloy impregnated with 

WC nanoparticles was seen [13]. Due to the grain-size 

strengthening mechanism, grain boundaries obstruct 

dislocation movement in the lattice. In the case of the 

carbon nanotubes impregnated with copper alloy, the 

CNTs were mechanochemically treated with copper 

powder to prevent them from floating on the melt surface 

due to their low density [14]. Similarly, in the case of 

polymer nanocomposites, nanometal oxides (Al2O3, TiC, 

and TiO2) in the polymer matrix could also improve  

the thermal stability of the composite. This characteristic 

is due to the stereochemical differences between  

the constitutes of nano polymer composites [15].  

However, Zhou et al. noted that dispersing nanoparticles 

at a greater volume percent in MMCs was extremely 

challenging due to the impact of strong van der Waals 

forces and the inherent incompatibility of the matrix alloys 

and nano reinforcement particles [9]. As a result, in all 

classes of MMCs, the lower percent of nanoparticles 

consistently exhibits lower strength. Much research  

has been taking place to address this bottleneck  

for MMCs and develop the next generation of materials  

for MMCs. 

The key concept behind the new generation is to infuse 

hybrid reinforcements into matrix alloys, a revolutionary 

way to make advanced metal matrix composites. Hybrid-

reinforced metal matrix composites are a sophisticated 

family of composite materials that combine good 

mechanical, physical, thermal, electrical, and structural 

properties. Hybrid MMCs are the most promising 

materials for protecting the human body and 

semiconductor electronics against radials. In advanced 

applications, hybrid MMCs can replace traditional 

materials and mono-reinforced MMCs [17–19]. 

In contrast with mono-reinforced MMCs, infusing 

hybrid reinforcement material into bulk MMCs is more 

convenient and promising because the desired rated 

performance depends on the material, application, and 

hybrid reinforcement ratio. Thus, the same procedures 

used to develop mono-reinforced MMCs are utilized  

for fabricating the hybrid MMCs, thereby expanding  

the application spectrum of MMCs. Despite their higher 

production costs than monolithic alloys, MMCs have  

a longer service life than monolithic alloys. Fig. 3 illustrates  

the hybrid metal matrix composite microstructure. This article  
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Fig. 1: Classification of MMCs and their characterizations. 

 

 

Fig. 2: Microstructural images of fiber, whiskers, and particulate-reinforced MMCs [16]. 

 

 

Fig. 3. Hybrid MMC microstructure [10]. 

 

reports on retrospective research of hybrid metal matrix 

composites. These include looking back at the materials, 

production processes, and mechanical, physical, wear, and 

corrosion properties of hybrid metal matrix composites. 

LITERATURE REVIEW, PREVIOUS RESEARCH  

Materials for hybrid MMCs 

This section summarises the literature review  

on the materials (matrix and reinforcement phases) used  

Metal Matrix Composites 

 

Mono reinforced metal matrix composites 

 

Hybrid reinforced metal matrix composites  

Characterization of Metal Matrix Composites 

Physico-Mechanical characterization 

Thermal, wear and corrosion characterizations 
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to fabricate hybrid reinforced MMCs. The properties  

of hybrid MMCs depend on the choice of composing 

phases; therefore, selecting base material and 

reinforcement materials is critical to improving matrix 

alloy qualities. 

 

 MMC matrix materials 

Many studies have been taking place to ascertain the 

MMC matrix and reinforcing materials [20]. As a result, 

the most common materials used to produce MMCs are 

aluminium, titanium, magnesium, copper, nickel, cobalt, 

and its alloys [21]. Among them, aluminium and its alloys 

were the most suitable material for manufacturing MMCs 

due to their low density, high thermal and electrical 

conductivity, and increased corrosion resistance [22].  

The 6xxx alloy offers excellent machinability, thermal 

conductivity, extrudability, and corrosion resistance [23]. 

To improve the mechanical, thermal, and seizure resistance 

of mono-reinforced MMCs, B4C and SiC particles  

are preferred reinforcement materials [24–26]. In the case 

of hybrid reinforced MMCs, TiB2 helps improve  

the composites' wear resistance [27]. 

However, adding dual reinforcing components to  

the matrix alloy increased mechanical qualities while 

lowering production costs and weight [28]. Table 1 

summarises the fundamental properties of various matrix 

alloys with varying reinforcement and casting processes. 

The choice of matrix and reinforcing materials for hybrid 

MMCs is crucial for engineering demands [29, 30]. 

Typically, hybrid MMCs consist of at least three ingredient 

compositions: a metallic alloy and two reinforcements  

in various forms bonded at the atomic level in  

the composite [31]. 

 

Hybrid reinforcements for MMCs 

The most prevalent hybrid MMC reinforcing materials 

are split into two categories: continuous and 

discontinuous. Al2O3, SiC, and carbon fibres are 

commonly used in hybrid Continuous Reinforced MMCs 

(CRMMCs). However, hybrid CRMMCs have limited 

uses due to high production costs and mechanical 

anisotropy. Compared to hybrid CRMMCs, hybrid 

DRMMCs showed a considerable gain in mechanical 

isotropy at a lower cost. These hybrid DRMMCs are 

further categorised into three groups according to the size 

of the hybrid reinforcements: Micron-scale Hybrid 

Discontinuous Reinforcements (MHDRs), Nano-scale 

Hybrid Discontinuous Reinforcements (NHDRs), and 

Multi-Scale Hybrid Discontinuous Reinforcements (MSHDRs). 

The most commonly employed hybrid micron 

reinforcements in hybrid DRMMCs are micron-sized 

hybrid SiC and Al2O3 particles [48]. The nanohybrid 

DRMMCs are reinforced with two or more discontinuous 

nano-materials, such as hybrid CNT and graphite nano-

platelets or hybrid CNT and nano-size SiC particles [49]. 

Adding hybrid micron and nano-scale reinforcements to 

hybrid DRMMCs produces multi-scale hybrid DRMMCs 

[50, 51].  

The customized material properties of multi-scale 

hybrid DRMMCs can be realized by selecting various 

combinations of matrix alloys and hybrid reinforced 

particles. The ability of MSHDRs to balance ductility and 

strength in MMCs has also been demonstrated in previous 

work [52]. Carbon-based reinforcing components such as 

graphite particles, carbon nanotubes, and graphene 

nanoparticles have self-lubricating capabilities that 

improve the physico-mechanical, wear, and corrosion 

properties of hybrid MMCs [53]. The processing 

techniques required to produce various hybrid MMCs by 

reinforcing different hybrid reinforcement materials will 

be addressed in detail in the following sections. 

 

Hybrid MMC processing techniques 

Hybrid MMC processing techniques can be categorized 

into two categories: primary processing and secondary 

processing. Primary processing refers to the series of 

operations fabricating hybrid MMCs to turn their raw 

materials into hybrid composites. It primarily entails 

incorporating hybrid reinforcements into the matrix alloy 

at the suitable content and achieving proper bonding 

between the constituents of hybrid MMCs. Secondary 

processing of hybrid MMCs refers to the additional steps 

required to transform the primary processing composite 

into the desired shape, size, and microstructure. 

 

Primary processing techniques for hybrid MMCs 

The physico-mechanical, thermal, wear, and corrosion 

properties are fundamental and most desirable 

comprehensive characteristics of hybrid MMCs. To attain 

all these characteristics, achieving a homogenous 

distribution of hybrid reinforcements, interfacial bonding 

between the matrix phase and reinforcement phase, and  
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Table 1: Significant findings on various matrix alloys with different reinforcement and casting methods. 

Composite constituents Size Processes Significant findings References 

AA7075/SiC/Al2O3 hybrid 

MMCs 
- Stir casting 

The results indicate that increasing the string speed to 550 rpm 

and the temperature to 8000C overcomes the wettability and 

non-homogeneous dispersion issues while adding hard 

reinforcements increases the composite's strength and hardness 

but not its impact strength. 

[32] 

Pure Mg/SiC/Al2O3 hybrid 

MMCs 

16-100 grit 

size 

Powder 

metallurgy 

The density of hybrid composites increased before and during 

the sintering process when adding the higher density 

reinforcing materials. 

[33] 

AZ31/Al2O3/SiC - 
Powder 

metallurgy 

Aluminium oxide and silicon carbide were added to the matrix 

alloy to enhance hardness and used 2% stearic acid (CH3 

(CH2) 16COOH) to generate magnesium MMC green 

compacts. 

[34] 

AA6061/B4C 10 µm Stir casting 

Due to the low wettability of B4C with Al matrix, the addition 

of K2TiF6 flux enhanced the wettability. The hard surface area 

of B4C particles provides more excellent resistance to plastic 

deformation, increasing the hardness of composites. 

[35] 

Magnesium/TiC/MoS2 

hybrid MMCs 

55 µm 

25–35 µm 

10–20 µm 

Powder 

Metallurgy 

The magnesium hybrid composite containing 10% TiC and 5% 

MoS2 showed the most remarkable improvement in tribological 

behaviour. 

[36] 

AA 7075 / SiC / Al2O3 / fly 

ash 

53 µm 

53-106 µm 
Stir casting 

Porosity scales in hybrid MMCs occur due to air bubbles in 

liquid metal, particle feeding time, and surface area interaction 

with the atmosphere. 

[37] 

Mg/SiC/Gr hybrid MMCs 
35-40 µm 

20-25 µm 

Powder 

Metallurgy 

CoF was reduced due to Gr's solid lubricant feature and 

increased with SiC particles. Moreover, Gr solid lubricant 

content in matrix alloy should not exceed 5%. 

[38] 

Mg/Ceric Ammonium 

Nitrate (CAN) based 

MMCs 

- in situ 
In-situ reinforcements of ceramic particles in Mg alloy 

improved the mechanical properties of Mg-based MMC. 
[39] 

Mg/SiC/Al2O3 hybrid 

MMC 
20 µm 

Stir casting, 

FSP 

FSP improved the mechanical and wear properties of Mg-based 

hybrid MMC than stir cast hybrid composites. 
[40] 

Al/TiC composites 

325 mesh 

size (Al 

powder) 

10 µm (TiC) 

Hot 

consolidation 

technique 

The mechanical properties of Al/TiC MMCs were enhanced, 

and the resulting composite was suitable for structural and 

industrial use. 

[41] 

Al-TiC MMC - 
In-situ: stir 

casting 

The carbon-bearing activated charcoal powder was added to the 

Al-Ti melt at 12000C to form TiC particles. The wear rate of 

Al/TiC MMC decreased with TiC % increased. 

[42] 

Cu/Al2O3 surface 

composites 
20 µm FSP 

Adding Al2O3 particles raises the copper matrix's 

recrystallization temperature and the mechanical characteristics 

of CASCs. 

[43] 

Al6061/SiC/B4C 

100 µm 

(Al 6061) 

SiC & B4C (8 

µm & 10 

µm) 

Powder 

metallurgy 

The PM processing method could not achieve homogenous 

dispersion of reinforced particles, and the agglomeration of 

reinforced particles was visible in hybrid composites, as seen in 

Fig. 4. 

[44] 

Ti/B4C MMC 

75-180 µm 

(Titanium 

Grade 1 

powder) & 

45-75 µm 

(B4C) 

Additive layer 

manufacturing 

The author found that Ti-based MMCs processed with ALM 

have better strength and young's modulus than pure Ti alloys. 
[45] 

AA2024/Al2O3/SiC hybrid 

MMC 

10 µm, 20 

µm and 40 

µm 

Squeeze casting 

technique 

The mechanical properties and seizure resistance of 10 µm 

hybrid SiC and Al2O3 particles were significantly improved. 
[46] 

Ti-6Al-4V/ TiB2 powder 

MMC 

100 µm (Ti-

6Al-4V) 

10 µm (TiB2) 

Direct energy 

deposition 

method 

Based on mechanical qualities and SEM images, the author 

showed that direct energy deposition is a promising additive 

manufacturing process for creating MMC with homogenous 

reinforcement dispersion. 

[47] 
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Fig. 4. Agglomeration of reinforced particles in hybrid MMC 

[44]. 

 

structural integrity of hybrid reinforcements is likely to be 

an essential aspect in fabricating hybrid MMCs. As a result, 

many manufacturing procedures have been developed over  

the decades to fabricate hybrid MMCs. As per the methods 

available to incorporate the hybrid reinforcements into the 

matrix alloy, primary processing methods are categorized 

into ex-situ and in-situ processing routes, as indicated  

in Fig. 5. In addition, a revolutionary processing 

technology called additive manufacturing is becoming 

more critical in today's industries for producing hybrid 

MMCs, as mentioned in the following sections. 

 

Ex-situ processing route 

In the ex-situ technique, the reinforcements are 

prepared separately and then added to the metal matrix, 

with no chemical reaction between the reinforcing phase 

and the matrix phase. At the same time, in the in-situ 

technique, the reinforcement phase is formed through  

a chemical reaction within the metal matrix [54]. Ex-situ 

synthesis is the most preferred method for large-scale 

industrial applications over in-situ processing [55].  

The processing routes available in the ex-situ technique are 

also suitable for most of the in-situ processing routes. 

The processing methods such as infiltration, squeezing, 

and stir casting are most frequently and commonly utilized 

in liquid-state processing techniques [56, 57], whereas, in 

solid-state processing, diffusion bonding, powder 

metallurgy, and FSP are viable processes. In the solid-state 

processing method, the development of MMCs is due to 

the mutual diffusion of the matrix and dispersed phase 

under adequate pressure at high temperatures. 

 

(a) Squeeze casting 

Squeeze casting is an ex-situ liquid-state processing 

technology designed to overcome the limitations of 

classical casting. It combines forging and a typical casting 

process to fabricate MMCs. The development of this 

process is to provide pressure-induced liquid metal 

solidification, removing casting defects like porosity while 

maximizing heat flow rate. 

It is the most widely used efficient production process 

for Al and Mg-based MMCs in the fabrication of 

automotive parts. As seen in Fig. 6, combining  

the reinforcement and matrix phases with pressure involve 

four processes. 

In order to produce high-quality composites, the 

following process parameters must be controlled: mold 

and die temperatures, squeezing pressure time, melt 

pouring temperature, and melt pouring speed. So far, there 

have been no optimal process parameter settings to control 

composite quality [58, 59]. In this process, the base 

material and reinforcement phase can react chemically, 

which makes it challenging to create a uniform distribution 

of reinforcement phases. 

However, many authors documented the fabrication of 

MMCs using the squeezing casting process to assess the 

characteristics of squeeze-cast MMCs. For example, 

Zhang XN et al. used the squeeze cast process to fabricate 

Al-based hybrid SiC whiskers and nano SiC particle 

composites with high strength and elastic modulus. 

Similarly, Muraliraja R et al. showed the distribution of 

reinforcement and casting faults in squeeze-cast MMCs [61]. 

Fig. 7 shows the squeeze cast AA-based mono and hybrid 

reinforced MMC. 

 

(b) Infiltration method 

It is the most widely used liquid-state processing 

method for hybrid Al/Mg-based MMCs [64]. This 

approach has two primary stages: making a porous  
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Fig. 5: Classification of hybrid MMC fabrication methods. 

 

 
                          (a)                           (b)                                 (c)                               (d) 

 

Fig. 6: Squeeze casting process (a) 1st step, preheat the die set (b) 2nd step, pouring the molten metal into die cavity  

(c) 3rd step, solidify molten metal under pressure and (d) 4th step, ejection of casting [60]. 

 
 

 

 

 

 

 

 

 

 

 

Fig. 7: SEM micrographs of squeeze cast composites (a) AA 2024/Gr MMC[62] (b) A319/AZS fibre/SiC hybrid MMC [63]. 

Liquid phase processing 

 ❖ Stir casting 

❖ Squeeze casting 

❖ Infiltration methods 

❖ Spray deposition 

 

Mechanical alloying (MA) 

Exothermic Dispersion (XD) 

Reactive Hot Pressing (RHP) 

Ex-situ process In-situ process 

Solid phase processing 

 ❖ Powder metallurgy 

❖ Diffusion bonding 

❖ Friction stir process 

❖ Physical vapour deposition 

 

 

Primary processing techniques of MMC 
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pre-form of hybrid reinforcements and infiltrating molten 

alloy into the pre-forms to produce hybrid composites. 

This process is classified into three types based on the 

source of external forces: gravity infiltration, pressure 

infiltration, and vacuum infiltration [65]. This technique's 

fundamental strategy is overcoming the poor wetting 

property of molten metal and the hybrid pre-formed  

phase [66]. However, this approach has a lower ductility 

in prepared MMCs [67] due to the increased reinforcement 

additions. 

 
(c) Stir casting route 

Stir casting is the most suited traditional and 

economical technology for fabricating particle reinforced 

MMCs [68–70] due to its simplicity, flexibility, proven 

procedure, low manufacturing cost, and mass production 

application. In stir casting, mechanical stirring is used at 

the liquidus state to reduce the sedimentation of reinforced 

particles by their higher density and increase the reinforced 

particles' dispersion [71]. In general, non-homogeneous 

particle dispersion is one of the most challenging aspects 

of casting metal matrix composites.  

A mechanical stirrer was used to stir the melt in order 

to tackle the difficulties of non-homogeneous particle 

distribution and surface energy barriers. The stirring 

speed, stirring time, pouring temperature, wetting 

elements, reinforcement preheat temperature, and mould 

are critical process factors in the stir casting route [72–74]. 

However, proper coating on hybrid reinforcement particles 

led to attain adequate wetting and uniform distribution of 

hybrid particles in liquid metal because stir cast process 

parameters are insufficient to improve the impression of 

hybrid particles in the liquid metal and the mechanical 

properties [75].  

Further, the production technique and reinforcement 

size also affect composite properties [76]. Thus, this 

method has been successfully used to manufacture hybrid 

reinforced MMCs based on aluminium [77], Mg [78] and 

Cu [79]. For example, Boppana SB et al. discovered that 

increasing the amount of hybrid reinforce particles 

increased the ultimate strength, yield strength, hardness, 

and elongation property of hybrid MMCs [80]. Similarly, 

Sozhamannan GG et al. found that 7500C to 8000C at 20 

minutes holding time was the best parameter for achieving 

sufficient wetting and homogeneous dispersion of the 

ceramic particles [81]. Additionally, adding 1.5 %  
 

 

 

 

 
 

Fig. 8. (a) OM image A356.2/SiC/RHA hybrid composite [83] 

(b) SEM image of Al6061/SiC/fly ash hybrid composite [84]  

(c) SEM image of Al6061/Al2O3/Graphene hybrid composite [80]. 

 

magnesium as a wetting agent to Al/SiC/fly ash hybrid 

MMCs [82] improves the bond strength of hybrid 

reinforcements with aluminium alloy. Fig. 8 depicts the 

SEM, and optical microstructures of a SiC/RHA/Fly 

ash/Al2O3/Gr reinforced Al-MMC. 

 

(d) Diffusion bonding 

In solid-state processing techniques, it is a widely used 

fabrication method for long fibre or sandwich composites. 

When sufficient heat and pressure are applied, MMCs  

are formed by the diffusion of components, causing them 

to adhere securely together. The main advantage of this 

processing technology is the ability to process a wide range 

of materials and have extensive control over fibre  
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Fig. 9: Process steps involved in powder metallurgy route. 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Hybrid graphite (Gr) and SiC particles reinforced Al based MMC. 

 

material's orientation and volume content in the matrix 

phase. The combination of controlled process parameters 

allows excellent bonding between the matrix and dispersed 

phases [85]. 

 

(e) Powder metallurgy 

Powder metallurgy is the study of synthesising MMCs 

from alloyed powders with or without the introduction of 

ceramic elements, in which powder materials are blended, 

compacted, and sintered to bond the surfaces [33]. It is the 

most extensively used and preferred method, particularly 

in the fabrication of hybrid MMCs, due to its simplicity, 

adaptability, and flexibility. As shown in Fig. 9, this process 

requires three phases to fabricate a composite [86–88]. 

The primary benefit of the PM route is that there is no 

chemical reaction between the constituents of MMC 

powders. It produces products with the highest degree  

of dimensional accuracy. In some instances, secondary 

processing techniques such as rolling, polishing, and grinding 

may be required to create completed hybrid MMC 

products. However, due to the chemical hazardous of 

powders [89], this route is limited to use for large-scale 

production. Fig. 10 shows the SEM image of a fabricated 

hybrid MMC using the PM route. In addition,  

Megahed et al. stated that the extrusion process reduced 

the porosity defect in PM route after the cold compaction 

and sintering process [90]. Compaction pressure, sintering 

duration, and sintering temperature are crucial process 

parameters in the production of sound composite [91, 92]. 

 

(f) Friction stir process 

The friction stir process is a unique method of severe 

plastic deformation that was created as a scrap-free 

advanced green manufacturing approach with numerous 

metallurgical and environmental advantages over 

orthodox manufacturing methods [94]. The FSP method 

uses tool rotation to disperse hybrid reinforcement 

particles in matrix alloy uniformly. FSP, in particular, is a 

solid-state processing method evolved from the modified 

friction stir welding method [95]. Furthermore, the FSP 

approach is better for fabricating particle-reinforced 

surface composites. Fig. 11 shows a schematic design  

 Sintering 

Finishing 

(Using secondary 

processing methods) 

Powder preparation 

 
Metal powders and additives 

(binders) Mixing   Pressing 

Blending Compaction 



Iran. J. Chem. Chem. Eng. A Retrospective Investigation on Hybrid Metal Matrix Composites: ... Vol. 42, No. 6, 2023 

 

Review Article                                                                                                                                                                  1851 

 

 

 

 
 

Fig. 11: (a) Friction stir processing method [96] (b) A356 

hybrid composite developed by using FSP method [97]. 

 

 

Fig. 12: Optical image of composite prepared by using RHP in-

situ method [104]. 

 

of the FSP approach and an SEM image of a produced 

hybrid composite. 

For many years, a lot of research works on the 

development of hybrid MMCs using the FSP method have 

been chronicled by many authors. For example, particle 

agglomeration's tendency to produce composites can be 

significantly reduced by selecting an appropriate FSP tool 

shoulder diameter [98]. To provide a homogeneous 

distribution of reinforced particles in composite 

manufacturing, drilling holes in matrix alloys yields 

effective results and eliminates the possibility of particle 

agglomerations [99]. 

 

In-situ processing route 

The in-situ preparation of hybrid MMCs uses mainly 

the chemical reaction between the elements to form hybrid 

reinforcements within the matrix alloy. For preparing 

hybrid MMCs, in-situ methods have three distinct 

advantages over ex-situ methods, including: 

(i) the process is thermodynamically stable at the 

interfaces of the composite constituents. 

(ii) the process achieves good interfacial bonding 

between in-situ reinforcements and matrix phase; and  

(iii) the process achieves a more homogeneous 

distribution of hybrid reinforcements when compared  

to ex-situ reinforcements. 

Therefore, due to these benefits, the in-situ hybrid 

MMCs exhibit superior mechanical characteristics, are 

free of contaminations in reinforcement surfaces and have 

the excellent ability for vast applications. The in-situ 

reinforcement process can be classified into three 

techniques [100] such as Mechanical Alloying (MA) [101], 

Exothermic Dispersion (XD) [102] and Reactive Hot 

Pressing (RHP) [103]. The optical image of the prepared 

composite using the RHP in-situ method is shown in Fig. 

12. In addition to the above ex-situ and in-situ techniques, 

a unique method for fabricating hybrid reinforced MMCs 

has been developed, such as additive manufacturing. 

 

Additive manufacturing 

The Additive Manufacturing (AM) technology for 

producing hybrid MMCs has recently gained a lot of 

interest in the current engineering sectors [105, 106]. 

Additive manufacturing, also referred to as 3D printing,  

is a process that converts a three-dimensional design into 

a physical object. Once the 3D design file has been cut into 

thin layers, the design is sent to an additive manufacturing 

machine to manufacture a three-dimensional object. Once 

a very thin layer of metal powder is dispersed on the 

platform, the manufacturing process begins. The first layer 

of 3D design is melted in a powder bed using a laser or 

electron beam. The platform has been loaded, and another 

layer of metal powder has been spread across it. The layering 

and lancing process is thermal until the part is finished. 

The metallic powder melts, revealing the physical object 

beneath. 
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Fig. 13: Classification of AM processes. 

 

Additive manufacturing is primarily used to create  

parts that are lighter, stronger, and have a more complicated 

shape than typically manufactured parts [107]. AM is 

revolutionising industrial production due to benefits such as 

high design flexibility, high customisation, energy savings, 

reduced inventory stock and material waste, no need for 

moulds, and the ability to precise features without 

increasing cost [108, 109]. The ASTM 52900 standard 

defines AM procedures based on material type, deposition 

technique, and material fusion or solidification [110, 111].  

As shown in Fig. 13, five basic working principles 

[112–114] are commonly used to describe AM processes. 

These includes Selective Laser Sintering (SLS), Selective 

Laser Melting (SLM) [115], Laser-Melting Deposition 

(LMD) [116], Fused Deposition Method (FDM) [117, 

118], Stereolithography (SLA), Direct Inkjet Printing 

(DIP), Layer-wise Slurry Deposition (LSD) and 

Laminated Object Manufacturing (LOM) [119–122] 

methods. According to Behera MP et al. [123], selective 

laser melting was the most promising method for 

fabricating MMCs with higher corrosion, fatigue, and 

wear resistance [124]. Similarly, author Li J et al. 

suggested a new technology called Ultrasonic Additive 

Manufacturing to produce multifunctional metal matrix 

composite structures with embedded printed electrical 

components [125]. 

Physico-mechanical, tribological and corrosion 

properties of hybrid MMCs 

The physico-mechanical, tribological and corrosion 

behavior of hybrid MMCs may be anticipated based on  

the type, orientation, size, and form of the reinforcements 

in the matrix alloys. In determining the characteristics  

of MMCs, the intrinsic qualities of constituents, structural 

arrangement, and the contact between the constituents 

would all play a significant role. Apart from these 

characteristics, a few more significant parameters strongly 

influence the properties of hybrid MMCs, such as volume 

per cent and homogeneity of reinforcement, as well as  

the microstructure of the system. 

In many engineering applications, there is a long list of 

attributes acquired in materials for satisfying the current 

demands: tensile and impact strengths, hardness, 

compressive strengths, thermal, seizure and corrosion 

resistance. Therefore, many previous publications have 

been analyzed to determine the effect of various 

reinforcements on different matrix alloys for enhancing 

the hybrid MMCs properties. The major contributions of 

various reinforcements on tribo and physico-mechanical 

and corrosion properties of different matrix alloys  

are summarised in Table 2 and Table 3. 

Aluminium alloys and aluminium-based composites 

are the most widely used materials [126–129] due to their  

Additive manufacturing/3D printing 

Material extrusion Vat polymerization 

Material jetting/binder jetting 

FDM method 

Ink jet printing (drop on demand 

printers) 

SLA method 

SLS method 

Powder bed fusion (polymer) 

SLM method 

Powder bed fusion (metals) 
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corrosion and metallurgical qualities and recycling 

potential for high-performance industries. The volumetric 

range of reinforcing elements in aluminium MMCs was up 

to 70% to improve alloy properties. While magnesium 

alloys and composites have also proven to be appealing as 

a new class of engineering material due to their lightweight, 

high strength, improved corrosion resistance, and low 

thermal coefficient of expansion. Due to these attributes, 

magnesium composites are also used in the automotive 

industries and achieve lower CO2 emissions [130]. 

Furthermore, if it is used for low-weight airframe structures 

in aerospace sectors, it would become an innovative 

technology [131, 132]. In addition, reinforcement of CNTs 

in the magnesium alloys improved the wettability and 

bonding strength of the composites [133].  

Regarding physical qualities, density and porosity were 

often utilized parameters for material selection. Thus, the 

density of composites can be computed using the rule of 

the mixture and the Archimedes principle [134]. The 

mechanical qualities of any material are usually 

determined by its relative density and porosity. In casting, 

porosity is assessed by comparing theoretical and actual 

densities [135]. The non-wettability, shrinkage, long 

particle feeding, poring time, temperature and pressure, 

gas entrapment, clustering of particles and hydrogen 

evolution are the reasons to cause porosity defects  

in hybrid composites [83]. In addition, the density of 

hybrid MMCs would also depend upon the volume 

content, nature, form and size of the reinforcement 

particles [136]. In generally, hardness measurements of 

hybrid MMCs have been performed in two different 

positions to test the potential effect of an indenter  

on the firmer elements, with an average of two results [137]. 

According to Kumar K.R. et al., the higher resistance  

to dislocation movement and lower density coarse 

particles in the matrix alloy has increased the tensile 

strength, hardness, and density of A380 reinforced with fly 

ash MMC [138]. This inference can be observed in Fig.14 

(a, b & c). Similarly, Mittal P et al. [139] reported that 

introducing graphite particles in addition to Al2O3 particles 

in copper-based hybrid MMCs reduces the density and 

hardness qualities because graphite acts as a solid 

lubricant, softening the matrix alloy. Another possible 

reason for the decrease in density is the substantial density 

difference between graphite and copper alloy. In the case 

of density and porosity of hybrid rice husk ash and SiC  
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 14: Mechanical characteristics of fly ash reinforced 

composites [14].  

 

particulate reinforced MMCs, the decreasing density  

was mainly due to the presence of low-density rice husk 

ash and SiC particulates in aluminium alloy. The gas 

entrapment during mixing, hydrogen evolution and air 

bubbles entering the slurry are the reasons to increase 

porosity, and this inference may be seen in Fig. 15a. 
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Fig. 15: Effect of hybrid reinforcements (a) density-porosity of hybrid MMCs [83] and (b) tensile strength of hybrid MMCs [46]. 

 

As we all know, primary reinforcements such as 

ceramic particles are extremely hard in nature, less dense, 

and temperature resistant. As a result, it has no 

deformation behaviour at high temperatures and pressures. 

In contrast, secondary reinforcements such as fly ash, rice 

husk ash, copper, and graphite, among others, can easily 

deform. According to Fig. 15b, the tensile strength of 

hybrid MMCs increased with increasing reinforcement 

content and decreasing particle size. It is simply due to the 

addition of hard ceramic particles to the ductile matrix 

alloy, but it dramatically reduces the ductility and 

elongation per cent of hybrid MMCs [46]. Similarly, 

including alumina, SiC, and B4C particles improved 

aluminium alloy's hardness, yield strength, and tensile 

strength properties while decreasing ductility. 

Furthermore, adding SiC to the ductile matrix creates  

a strong interface bond with the matrix, improving hybrid 

composites' mechanical properties [140]. The inclusion of 

hard ceramic particles/fibres into a ductile titanium matrix 

considerably increases its hardness, related to the volume 

percentage of ceramic reinforcement [141]. Furthermore,  

Ma X. et al. [142] found that tensile stress can efficiently 

transfer to reinforcement materials because of the atomic 

bonding surfaces between the reinforcement phase and matrix 

phase. Therefore, the Al/AlNp Metal Matrix Composite 

(Al/AlNp MMC) can sustain extreme stress without 

developing a crack. However, Reddy P.V. et al. [143] 

observed that with the limited interface in hybrid composites, 

the toughness of the composite decreased without affecting 

the wear and hardness properties. Furthermore, infusing 

MWCNT and micron-sized SiC particles into magnesium 

hybrid MMC improves the mechanical properties [144].  

Additionally, Griffiths R.J. et al. [145] presented  

an additive friction stir procedure, also known as MELD 

manufacturing process in additive manufacturing,  

for enhancing the characteristics and minimising porosity 

and non-homogeneous dispersion of reinforced particles  

in MMCs. According to the review findings, Das D.K. et al. 

concluded that the compressive strength of ceramic 

reinforced aluminium composites improved as the 

reinforcement per cent and strain rate during compression 

increased [146]. 

However, as the fly ash percentage of stir cast 

composites increases, the problems of agglomeration and 

flaws rapidly increase [147]. Adding hybrid fly ash and 

alumina to matrix material significantly enhances the 

mechanical characteristics while maintaining density 

reduction [148]. According to Senapati M.R., over 90 mt 

of fly ash is generated annually in India, which is significantly 

responsible for environmental degradation [149]. Even 

though fly ash is pollution, it is a critical raw material for 

various purposes. The efficient use of fly ash in several 

industries can contribute significantly to developing new 

technologies [150]. However, by incorporating fly ash  

as a reinforcement material into aluminium alloys,  

the energy content, material content, cost, and weight  

of chosen industrial components are reduced, while  

the selected qualities are increased. 

Today, tribological and corrosion properties are critical 

for material application, as wear occurs due to relative 

motion between two surfaces under various service 

conditions. In contrast, corrosion occurs due to material 

dissolution, leaching, and chemical reaction with the 

environment. There are various types of wear processes  
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Table 2: Influence of various reinforcing materials on physio-mechanical properties. 

Composite constituents Size 
Significant findings 

(Mechanical and physical properties) 
References 

A356/fly ash/Al2O3 100 µm 

Hybrid reinforcements have improved mechanical and density qualities. Using of fly 

ash as a single reinforcement reduced the density and enhanced the mechanical 

properties. 

[151] 

AA 6082/SiCp 

/Al2O3/flyash 

53 µm, 

53-106 

µm 

The mechanical and physical properties of hybrid MMCs were improved by mixing 

hard ceramic particles with fly ash. 
[152] 

A356.2/RHA/SiC 

25 µm 

(RHA) 

35 µm 

(SiC) 

Increasing the reinforcing percentage reduces density but increases the porosity and 

hardness of the hybrid composite. 
[83] 

Al6061/Al2O3/MoS2 - 
Increasing the alumina particle weight %, improved the mechanical qualities of hybrid 

composites. 
[153] 

Al-4%Cu-2.5%Mg 

matrix/SiC/Al2O3 

18 µm–40 

µm 

The Al2O3 reinforced composite has higher elongation than the SiC reinforced 

composite. Adding SiC and alumina reinforcements further enhances the material's 

proof stress, tensile strength, elastic modulus, and hardness while preserving low 

porosity. 

[154] 

AA5083/Fly ash/SiCp 
400 µm & 

6 µm 

Adding fly ash and SiCp reinforcement particles increases composite mechanical and 

tribological characteristics. 
[155] 

Aluminum 

alloy/SiC/Al2O3/fly ash 

53 µm 

53-106 

µm 

Adding SiC, Al2O3, and fly ash particles to aluminium hybrid MMCs improves their 

mechanical and physical properties. 
[156, 157] 

Al6061/WC/fly ash hybrid 

MMCs 
2-3 µm 

Liquid metal was degassed with dry hexachloroethane. Also, TiC reinforcement 

material has a more substantial effect on the mechanical properties of hybrid MMCs 

than fly ash reinforcement material.  

[158] 

Al356/fly ash/ Al2O3 hybrid 

MMCs 
- 

It is critical to pay close attention to the following aspects while fabricating MMC 

using the stir casting process: 

• Achieve homogeneous reinforcement distribution 

• Ensure wettability of composite constituents. 

• Reduce porosity in cast MMC 

• Avoid chemical reactions between the constituents. 

[148] 

Al6061-SiC/Graphite hybrid 

composites 

37 µm 

(SiC) 

1 µm (Gr) 

The density of hybrid composites has decreased due to the inclusion of graphite 

particles, and the author has concluded that hybrid composites have higher tensile 

strength than mono reinforced composites. 

[159] 

Al7075/SiC/TiO2 hybrid 

MMCs 
50 µm 

They concluded that SiC is the most influential parameter for achieving maximum 

possible values in tensile, hardness and impact properties. 
[160] 

Al7075/TiB2/Gr 

hybrid composites 

2-10 µm 

(TiB2) 

30-50 µm 

(Gr) 

Incorporating TiB2 and Gr particles into an aluminium alloy results in a brittle 

material with low ductility. Increasing the amount of graphite in the aluminium matrix 

also increases the hardness. 

[161] 

TiC/AlSi10 Mg nano MMC - 

The material's micro hardness and tensile strength qualities were improved using a 

selective laser melting technique without the casting errors that traditional processing 

routes created. 

[162] 

AZ31/SiC reinforced 

composites 
53 µm 

The inclusion of SiC reinforcement not only boosts the load-bearing capability of 

magnesium alloy but also minimises matrix deformation by limiting dislocation 

movement. 

[163] 
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that can be classified according to the conditions under 

which they occur, including adhesive wear, abrasive wear, 

delamination wear, erosive wear, fretting wear, fatigue 

wear, and oxidative wear [53, 164]. The primary 

mechanism for higher loads and high sliding speeds is 

delamination, which shifts to abrasion when the wear 

situation changes to lower loads and low sliding speeds.  

Usually, hybrid MMCs have a substantially higher 

wear resistance than their monolithic materials and mono 

MMCs. It is important to note that the wear loss of hybrid 

MMCs is highly dependent on intrinsic material properties 

and extrinsic wear testing circumstances. The intrinsic 

material properties are type of ductile matrix and 

reinforcements used, distribution state and size of 

reinforcements, as well as the matrix and reinforcement 

interfacial bonding and the extrinsic wear testing 

circumstances are applied loads and sliding speeds [165]. 

Furthermore, the presence of fly ash particles in hybrid 

MMCs reduces wear rate by forming pits surrounding the 

particles and increasing bulk hardness [166]. The addition 

of fly ash particles in mono MMCs reduces wear rate by 

limiting the deformation of the matrix alloy [138]. 

Similarly, the inclusion of graphite decreases the hardness 

and frictional coefficient of aluminium MMCs [167]. In 

addition, incorporating carbon-based materials into a 

ductile matrix can form a self-lubricating film during the 

sliding process, preventing direct contact between the 

sliding surfaces and reducing the ploughing effect of hard 

asperities, lowering the coefficient of friction and 

improving wear resistance [168]. 

In hybrid SiC and Al2O3 particle reinforced MMCs [169], 

wear parameters such as sliding distance and sliding speed 

have the largest impact on the wear rate. In wear behaviour 

analysis of hybrid composites, increasing the applied load 

increases the real contact area, which raises the wear rate 

and frictional coefficient of composites [170]. More 

precisely, the inclusion of ceramic particles in magnesium 

alloys can improve the wear resistance and frictional 

coefficient (CoF) of magnesium-based MMCs [171]. Most 

of the time, the hybrid reinforcing material acts as a barrier 

between the surface of the composite and corrosive  

media [172]. In general, galvanic corrosion between  

the composite constituents governs the corrosion 

behaviour of MMCs [173]. As regards the role of the fibre 

and carbon, results indicate that the most electrically 

conducting fibre and carbon produced the most marked 

galvanic effect, with corrosion occurring preferentially  

at the fibre-matrix interface. 

 

CHALLENGES AND OPPORTUNITIES 

There are many conflicts over the fabrication, 

capability, and usage of hybrid MMCs in present-day 

industries. Furthermore, there is serious concern about 

production cost, property prediction, and unavailability of 

design data, recyclability, reclamation, secondary processing 

capability, compromised ductility and toughness 

properties, as well as the enhancement of superior 

behaviours. Therefore, these are the few characteristics 

that limit the widespread adoption of hybrid MMCs. 

• In order to achieve the homogeneous dispersion of 

hybrid reinforcements, atomic interfacial bonding, 

desirable properties and improved wettability between 

matrix phase and hybrid reinforcement phase without 

damaging any metallurgical characteristics, adequate 

emphasis has to be paid towards the understanding of 

mechanisms involved in various processing methods, 

control of process parameters, reinforcements role and 

development of new processing techniques [192]. Thus, 

there is a chance to produce hybrid MMCs without any 

compromising ductility, hardness, wear and toughness 

properties.  

• Hybrid composite performances mainly depend on 

the shape, size, nature, orientation and volume per cent of 

reinforcements. Therefore, sufficient work must be done 

to fabricate lower-cost reinforcements and alloys to 

produce cost-effective hybrid MMCs with desired 

qualities. 

• The corrosion behaviour of hybrid MMCs would be 

the main criteria for selecting these composites in many 

applications at elevated conditions over the mono 

reinforced alloys. The main reason for lowering the 

corrosion resistance in hybrid MMCs is due to the 

chemical degradation of reinforcement interface with 

matrix alloys and this can be avoidable through controlling 

the processing parameters and interactions between  

the interfaces. 

• In addition to the above challenges, production of 

hybrid MMCs by reinforcing the industrial and agro 

wastes like fly ash, red mud, rice husk, sugarcane bagasse, 

palm oil fuel ash and coconut husk has attracted significant 

attention because disposal of these wastes has a biggest 

problem to the environment and human health. Therefore,  
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Table 3. Influence of various reinforcing materials on wear and corrosive properties. 

Composite constituents Size Significant findings References 

FSPed AA6082/CaCO3 10–12 µm 

Wear rate and CoF are directly proportional to each other, and the formation of a tribo 

mixed solid lubricant CaCO3 layer at the sliding surface has considerably reduced 

wear rate. 

[174] 

LM25/B4C/Gr 25-75 µm The addition of B4C - Gr particles to the alloy improves hardness and wear resistance. [175] 

Al–Mg–Si alloy 

matrix/rice husk ash/SiC 

50 µm 

28 µm (SiC) 

The addition of RHA and SiC hybrid reinforcement increased the corrosion and wear 

resistance of hybrid composites. 
[176] 

Al/Mg-based hybrid 

MMCs 
- 

Concluded that pin-on-disc tribometer and stir casting techniques were the best wear 

test analysis and fabrication methods for Al/Mg-based hybrid MMCs. 
[177] 

Al6061/SiC MMCs 150 µm 
The SiC reinforced MMCs outperformed the matrix alloy wear resistance, density, and 

mechanical characteristics. 
[178] 

Al6061/SiC & 

Al7075/Al2O3 MMCs 
20 µm 

Al6061/SiC MMCs exhibit superior mechanical and tribological properties than the 

Al7075/Al2O3 MMCs. 
[179] 

Al2219/TiC particulate 

MMC 
50-60 µm 

Adding TiC particles to the matrix alloy improves MMC wear resistance and decreases 

wear rate compared to Al 2219 alloy. 
[180] 

Al6061/B4C/Mica Hybrid 

Composites 

70 µm & 3-

10 µm (mica) 

During the wear test, the secondary reinforcement, such as mica particles, acts as a 

solid lubricant between the two meeting surfaces, reducing the frictional coefficient.  
[181] 

Al/SiC/Mo reinforced 

MMCs 

67 µm (SiC) 

74 µm (Mo) 

Mixing hard SiC and Mo particles into the matrix alloy increased the proposed hybrid 

MMC's wear resistance. In terms of wear resistance, hybrid composites surpass matrix 

alloy and SiC-reinforced composites. 

[182] 

Al/SiC/FA 

53 µm (SiC) 

53-106 µm 

(FA) 

When a substantial load was applied to the aluminium hybrid MMC, a solid lubricating 

coating generated by fly ash material reduced wear loss and frictional coefficient. 
[183] 

Alumina-Al MMCs and 

SiC-Al MMCs 
- 

As a result of the stable inner oxide layer formed by Al2O3, SiC composites had 

deeper pits than alumina composites. 
[184] 

Al6065/SiC/graphite 

hybrid MMCs 
- 

Hybrid composites have better corrosion resistance than base alloys when tested using 

potentiodynamic polarisation and impedance methods. 
[185] 

Al/SiC MMCs 

Al powder 

(60 µm) 

SiC (3, 6, 11 

µm) 

It was concluded that increasing the volume fraction and decreasing the size of the SiC 

particles improved the corrosion resistance of the Al/SiC composites. 
[186] 

AA7178/ZrB2 MMCs - 
Adding ZrB2 particles in Al alloy greatly enhances the corrosion resistance of MMCs 

through an accumulation of reinforcement particles. 
[187] 

A356/RHA/Al2O3 hybrid 

MMCs 

100 µm 

(Al2O3) 

75 µm 

(RHA) 

Due to the inclusion of hybrid reinforcements, the corrosion resistance of A356 alloy 

has improved. 
[188] 

Al 7075/Al2O3/Gr 

hybrid MMCs 
20-30 µm 

In the corrosion study of proposed hybrid MMCs, Al2O3 particles serve as a physical 

barrier to the formation of corrosion pits, reducing the corrosion rate as well as the 

potential. 

[189] 

Cu/SiC/Gr hybrid MMCs 

400 mesh 

(SiC)  60 

mesh (Gr) 

The additions of SiC and graphite particles to copper alloy increases the corrosion and 

wear resistance of hybrid MMCs because graphite particles provide a lubricating film 

and SiC particles cover the defect regions and prevent electrolytic solution attack on 

the specimen surface. 

[136] 

Al7075/mica/E-glass 

fibers hybrid MMC 
- 

The number of interfaces increased with mica, graphite, and E-glass fibre composition. 

Interfaces are the main cause of corrosion in composites. Composites, however, have 

more corrosion pits due to the increased number of interactions. 

[190] 

Cu/HSSS/WC hybrid 

composites 
- 

Stated that the proposed composite attains the improved hardness, tensile strength, and 

corrosion resistance due to the addition of HSSS reinforcements. 
[191] 
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more researches must be done on recycling and using these 

wastes for the production of eco-friendly and low-cost 

hybrid MMCs [193]. 

• Along with the above challenges, the machinability 

of hybrid MMCs was a severe problem. Thus,  

the boundaries of hybrid MMCs have restricted to use of 

their capabilities in many engineering applications. 

Therefore, to overcome these challenges, new manufacturing 

methods must be discovered further to sustain the 

durability, reliability and machinability qualities of hybrid 

MMCs. 

 

CONCLUSIONS 

In this comprehensive review, the materials used  

for producing hybrid MMCs, processing techniques, and 

the Physico-mechanical, tribological and corrosion 

properties of the hybrid MMCs are all discussed in detail 

and summarised precisely. Based on the many research 

studies conducted for this review, inferences are drawn and 

listed in a set of consolidated tables. The following are 

some of the findings from the review study done  

on various aspects of hybrid MMCs: 

(i) Among the various matrix alloys, extensive research 

has been conducted on aluminium alloys for the purpose 

of improving the fundamental properties of aluminium-

based metal matrix composites, while very little research 

has been conducted on magnesium, copper, and titanium-

based metal matrix composites. 

(ii) Due to the impact of strong van der Waals forces 

and the inherent incompatibility of matrix alloys and nano 

reinforcement particles, it has been found that adding  

a smaller volume percent of nano particles always results 

in decreased strength in all classes of MMCs[9]. 

(iii) In majority of the discussions about hybrid 

reinforcements in MMCs, mono reinforcements were 

employed to improve the characteristics of matrix alloys. 

Regarding hybrid reinforcements, the multi-scale hybrid 

discontinuous reinforcing materials have been discovered 

to be identical reinforcing materials for increasing 

physico-mechanical, tribological and corrosion properties, 

as well as balancing ductility and strength in hybrid 

MMCs. 

(iv) In terms of tribological and corrosion properties, 

secondary reinforcements such as graphite, fly ash, rice 

husk ash, and others improved the properties and 

behaviours of matrix alloys regardless of matrix material 

type and nature. 

(v) After reviewing various fabrication works,  

two important manufacturing aspects can be highlighted: 

the powder metallurgy process is the most cost-effective 

process for manufacturing Mg/Ti alloy-based hybrid 

MMCs by maintaining a controlled level of porosity, 

whereas the stir casting process is also economical in mass 

production and more suitable for Al as well as Mg alloys. 

(vi) It has been found that the stirrer material, stirring 

speed, and stirring time must be precisely selected during 

the stir casting process because it is difficult to achieve 

uniform particle dispersion in the matrix alloy. 

(vii) In this conceptual review, it has been found that 

various studies have been performed on the preparation of 

hybrid MMCs through various conventional routes, 

including ex-situ and in-situ techniques, but hitherto very 

fewer studies have been published on the fabrication of 

hybrid MMCs by using additive manufacturing methods. 

(viii) Based on the review related to the fabrication of 

hybrid MMCs, the following issues have been identified:  

• Achieving more homogeneous or well-defined 

reinforcement dispersions, improving interfacial bonding, 

reducing residual stresses, avoiding crack formation at 

interfaces, dislocations, thermal mismatches between 

composing phases, and potential variations in the metal 

matrix were all ongoing research priorities. 

• In classical processes such as stir casting and powder 

metallurgy, there is a chance of secondary phase reactivity 

with the melt or a tendency for settling during casting. 

• Moreover, during solid and liquid state processes,  

the formation of reinforced phase agglomeration in the matrix 

must be prevented. 

• In most cases, post-processing operations is required 

to achieve the final size and shape of the component, which 

increases the component production costs. 

(i) As a result of all of these challenges and needs,  

it has been determined that additive manufacturing can be 

a suitable process to overcome many limitations imposed 

by traditional MMC processing methods. 

A review of materials used, processing techniques 

available, and tribo-mechanical and corrosion properties 

of hybrid MMCs have been carried out in this journal. This 

review will define the scope and direction of research into 

developing hybrid MMCs for a specific application using  
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multiple production techniques at low cost and with better 

attributes.  

 

Nomenclatures 

µm            Microns 
0C          Degree centigrade 

A12O3            Aliminium oxide 

AA            Aluminium alloy 

Al       Aluminium 

ALM     Additive layer manufacturing 

Al-Si        Aluminium-silicon 

AM              Additive manufacturing 

B4C                Boron carbide 

CaCO3         Calcium carbonate 

CAN               Ceric ammonium nitrate 

CASCs      Copper-Alumina Surface Composites 

CNTs         Carbon nano tubes 

CoF                  Coefficient of friction 

CRMMCs  Continuous Reinforced MMCs 

Cu              Copper 

DIP      Direct inkjet printing 

DRMMCs            Discontinuous reinforced MMCs 

FA              Fly ash 

FDM             Fused deposition method 

FSP                Friction stir processing 

Gr           Graphite 

HSSS     Highly strained stainless steel 

Hybrid MMCs              Hybrid metal matrix composites 

K2TiF6          Dipotassium titanium hexafluoride 

LMD            Laser-melting deposition 

LOM              Laminated object manufacturing 

LSD       Layer-wise slurry deposition  

Mg       Magnesium 

MHDRs          Micron-scale hybrid discontinuous  

                                                                    reinforcements 

Mo                 Molybdenum 

MoS2                Molybdenum disulfide 

MSHDRs            Multi-scale hybrid discontinuous  

                                                                    reinforcements 

mt                  Million tones 

NHDRs             Nano-scale hybrid discontinuous  

                                                                    reinforcements 

Physico            Physical 

PM         Powder metallurgy 

RHA               Rice Husk Ash 

rpm                Revolution Per Minute 

SEM    Scanning electron microscopy 

SiC               Silicon carbide 

SLA          Stereolithography  

SLM                Selective laser melting 

SLS               Selective laser sintering 

TiB2          Titanium diboride 

TiC            Titanium carbide 

TiO2           Titanium dioxide 

Tribo         Tribology 

WC           Tungsten carbide 

ZrB2       Zirconium di-boride 
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