Modulating Band Gap and HOCO/LUCO Energy of Boron-Nitride Nanotubes under a Uniform External Electric Field

Document Type: Research Article

Author

Department of Chemistry, Faculty of Science, Yadegar-e-Imam Khomeni (RAH) Shahre Rey Branch, Islamic Azad University, P.O. Box 18155-144 Tehran, I.R. IRAN

Abstract

In this study, spectroscopic properties of the single-walled boron-nitride nanotube (SWBNNT) –a semiconductor channel in molecular diodes and molecular transistors–have been investigated under field-free and various applied electric fields by first principle methods.Our analysis shows that increasing the electric field in boron-nitride nanotube (BNNT) decreases the Highest Occupied Crystal Orbital (HOCO) /Lowest Unoccupied Crystal Orbital (LUCO) gap (HLG) significantly and the nanotube can be a conductor. The observed results suggest that the BNNTs is a useful semiconductor channel as nano-molecular diodes and nano-molecular transistors. Apart from that, the relationship between isotropic chemical shielding as an observable spectroscopic property with atomic charge and magnetizability in the presence and absence of an external electric field was studied. In order to rationalize energy changes, the relationship between the relative energy with the average electron delocalization of nitrogen and boron atoms with a variation of the external electric field is studied.

Keywords

Main Subjects


[1] Martel R., Schmidt T., Shea H.R., Hertel T., Avouris P., Single-and Multi-wall Carbon Nanotube Field-Effect Transistors, Applied Physics Letters, 73, 2447-9 (1998).

[2] Tans S.J., Verschueren A., Rand Dekker C., Room-Temperature Transistor Based on a Single Carbon Nanotube, Nature, 393, 49-52 (1998).

[3] Baughman R.H., Zakhidov A., Aand de Heer W.A., Carbon Nanotubes-the Route Toward Applications, Science, 297: 787-92 (2002).

[4] Akola J., Rytkönen K., Manninen M., Electronic Properties of Single-Walled Carbon Nanotubes Inside Cyclic Supermolecules, J. Phys. Chem. B, 110: 5186-90 (2006).

[5] Iijima S., Carbon Nanotubes: Past, Present, and Future, Physica B: Condensed Matter, 323: 1-5 (2002).

[6] Monajjemi M., Najafpour J., Mollaamin F., (3,3)4 Armchair Carbon Nanotube in Connection with PNP and NPN Junctions: Ab Initio and DFT-Based Studies, Fullerenes, Nanotubes and Carbon Nanostructures, 21: 213-32 (2013).

[8] Najafpour J., Monajjemi M., Aghaie H., The Magnetizability and Chemical Shift Relationship in Carbon Nanotubes with PNP or NPN Junction, J. Comput. Theor. Nanosci., 11: 2005-16 (2014).

[9] Najafpour J., Monajjemi M., Aghaie H., Zare K., The Chemical Electronic Properties of PNP Molecular Transistor Based on (4,3) Chiral Carbon Nanotube, Fullerenes, Nanotubes and Carbon Nanostructures, 23: 218-32 (2015).

[10] Monajjemi M., Najafpour J., Charge Density Discrepancy between NBO and QTAIM in Single-Wall Armchair Carbon Nanotubes, Fullerenes, Nanotubes and Carbon Nanostructures, 22: 575-94 (2014).

[11] Song H., Reed M.A., Lee T., Single Molecule Electronic Devices, Adv. Mater., 23: 1583-608 (2011).

[12] Tsutsui M., Taniguchi M., Single Molecule Electronics and Devices, Sensors, 12: 7259-98 (2012).

[13] Song H., Kim Y., Jang Y.H., Jeong H., Reed M.A., Lee T., Observation of Molecular Orbital Gating, Nature, 462: 1039-43 (2009).

[14] Rubio A., Corkill J.L., Cohen M.L., Theory of Graphitic Boron Nitride Nanotubes, Phys. Rev. B, 49: 5081-4 (1994).

[15] Blase X., Rubio A., Louie S.G., Cohen M.L., Stability and Band Gap Constancy of Boron Nitride Nanotubes, Euro. Phys. Lett., 28: 335-40 (1994).

[17] Monajjemi M., Lee V.S., Khaleghian M., Honarparvar B., Mollaamin F., Theoretical Description of Electromagnetic Nonbonded Interactions of Radical, Cationic, and Anionic NH2BHNBHNH2 Inside of the B18N18 Nanoring, J. Phys. Chem. C, 114: 15315-30 (2010).

[18] Monajjemi M., Khaleghian M., EPR Study of Electronic Structure of [CoF6]3− and B18N18 Nano Ring Field Effects on Octahedral Complex, J. Cluster Sci., 22: 673-92 (2011).

[19] Monajjemi M., Boggs J.E., A New Generation of BnNn Rings as a Supplement to Boron Nitride Tubes and Cages, J. Phys. Chem. A, 117: 1670-84 (2013).

[20] Mollaamin F., Najafpour J., Ghadami S., Ilkhani A.R., Akrami M.S., Monajjemi M., The Electromagnetic Feature of B15N15Hx (x=0, 4, 8, 12, 16, and 20) Nano Rings: Quantum Theory of Atoms in Molecules/NMR Approach, J. Comput. Theor. Nanosci., 11: 1290-8 (2014).

[21] Najafpour J., The Stability of B15N15Hx Nano-rings is Affected by Electron Delocalization, Computational and Theoretical Chemistry, 1046: 1-5 (2014).

[22] Zhi C.Y., Bando Y., Tang C.C., Huang Q., Golberg D., Boron Nitride Nanotubes: Functionalization and Composites, J. Mater. Chem., 18: 3900-8 (2008).

[24] Cortés-Guzmán F., Bader R.F., Complementarity of QTAIM and MO Theory in the Study of Bonding in Donor–Acceptor Complexes, Coord. Chem. Rev., 249: 633-62 (2005).

[25] Hernández-Trujillo J., Cortés-Guzmán F., Fang D.C., Bader R.F., Forces in Molecules, Faraday Discuss., 135: 79-95 (2007).

[27] Zhang L., Ying F., Wu W., Hiberty P.C., Shaik S., Topology of Electron Charge Density for Chemical Bonds from Valence Bond Theory: A Probe of Bonding Types, Chem. Eur. J., 15:2979-89 (2009).

[28] Najafpour J. Zohari N., The Structure and Chemical Bond of FOX-7: The AIM Analysis and Vibrational Normal Modes, Iran. J. Chem. Chem. Eng. (IJCCE), 30(3): 113-120 (2011).

[29] Najafpour J., Foroutan-Nejad C., Shafiee G.H., Peykani M.K., How Does Electron Delocalization Affect the Electronic Energy? A Survey of Neutral Poly-nitrogen Clusters, Computational and Theoretical Chemistry, 974: 86-91 (2011).

[30] Matta C.F., Hernández‐Trujillo J., Tang T.H., Bader R.F., Hydrogen–Hydrogen Bonding: A Stabilizing Interaction in Molecules and Crystals, Chem. Eur. J., 9:1940-51 (2003).

[31] Poater J., Solà M., Bickelhaupt F.M., Hydrogen–Hydrogen Bonding in Planar Biphenyl, Predicted by Atoms‐In‐Molecules Theory, Does Not Exist, Chem. Eur. J., 12: 2889-95 (2006).

[32] Bader R.F., Pauli Repulsions Exist Only in the Eye of the Beholder, Chem. Eur. J., 12: 2896-901 (2006).

[33] Wolstenholme D.J., Matta C.F., Cameron T.S., Experimental and Theoretical Electron Density Study of a Highly Twisted Polycyclic Aromatic Hydrocarbon: 4-Methyl-[4] Helicene, J. Phys. Chem. A, 111: 8803-13 (2007).

[34] Grimme S., Mück‐Lichtenfeld C., Erker G., Kehr G., Wang H., Beckers H., Willner H., When do Interacting Atoms Form a Chemical Bond? Spectroscopic Measurements and Theoretical Analyses of Dideuteriophenanthrene, Angew. Chem. Int. Ed., 48: 2592-5 (2009).

[35] Tóbik J., Dal Corso A., Electric Fields with Ultrasoft Pseudo-Potentials: Applications to Benzene and Anthracene, J. Chem. Phys., 120: 9934-41 (2004).

[36] Choi Y.C., Kim W.Y., Park K.S., Tarakeshwar P., Kim K.S., Kim T.S. Lee J.Y., Role of Molecular Orbitals of the Benzene in Electronic Nanodevices, J. Chem. Phys., 122: 094706 (2005).

[37] Rai D., Joshi H., Kulkarni A.D., Gejji S.P., Pathak R.K., Electric Field Effects on Aromatic and Aliphatic Hydrocarbons: a Density-Functional Study,J. Phys. Chem. A, 111: 9111-21 (2007).

[39] Muruganathan M., Sun J., Imamura T., Mizuta H., Electrically Tunable van der Waals Interaction in Graphene–Molecule Complex, Nano Lett., 15: 8176-80 (2015).

[41] Novák M., Foroutan-Nejad C., Marek R., Modulating Electron Sharing in Ion-π-Receptors via Substitution and External Electric Field: A Route toward Bond Strengthening, J. Chem. Theory Comput., 12: 3788-95 (2016).

[42] Aragonès A.C., Haworth N.L., Darwish N., Ciampi S., Bloomfield N.J., Wallace G.G., Diez-Perez I., Coote M.L., Electrostatic Catalysis of a Diels–Alder Reaction, Nature, 531: 88-91 (2016).

[43] Cho T.H., Su W.S., Leung T.C., Ren W., Chan C.T., Electronic and Optical Properties of Single-Walled Carbon Nanotubes under a Uniform Transverse Electric Field: A First-Principles Study, Phys. Rev. B, 79: 235123 (2009).

[45] Bai L., Gu G., Xiang G., Zhang X., Electric-Field-Induced Spontaneous Magnetization and Phase Transitions in Zigzag Boron Nitride Nanotubes, Sci. Rep., 5: 12416 (2015).

[47] Becke A.D., Density-Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys., 98: 5648-52 (1993).

[48] Becke A.D., Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior, Phys. Rev. A, 38: 3098-100 (1988).

[49] Lee C., Yang W., Parr R.G., Development of the Colle-Salvetti Correlation-Energy Formula Into a Functional of the Electron Density, Phys. Rev. B, 37: 785-9 (1988).

[50] Stephens P.J., Devlin F.J., Chabalowski C., Frisch M.J., Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, J. Phys. Chem., 98: 11623-7 (1994).

[51] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., HratchianH P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. “Gaussian 09, Revision A.1”, Gaussian Inc., Wallingford CT (2009).

[52] Bader R.F.W., “Atoms in Molecules: A Quantum Theory”, Oxford University Press, Oxford (1990).

[53] Bader R.F.W., A Quantum Theory of Molecular Structure and Its Applications, Chem. Rev., 91 893-928 (1991).

[56] McWeeny R., Perturbation Theory for the Fock-Dirac Density Matrix, Phys. Rev., 126: 1028 (1962).

[59] Wolinski K., Hinton J.F., Pulay P., Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations, J. Am. Chem. Soc., 112: 8251-60 (1990).

[60] Janowski T., Woliński K., Relationship between Magnetic Shielding and Magnetizability, J. Chem. Phys., 117: 1994-2002 (2002).