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ABSTRACT: Titanium dioxide (TiO2) has received much attention, owing to applications in various 

areas including photocatalysis and photovoltaics. It is a wide band gap n-type semiconductor.  

Production of p-type TiO2 is challenging and interesting research work for its utilization in wider 

areas of applications. In this study, band structures and corresponding density of states of undoped 

and scandium (Sc)-doped TiO2 with different concentrations of Sc doping are calculated using Density 

Functional Theory (DFT). Sc doping in TiO2 converts intrinsically n-type TiO2 into p-type TiO2.  

An increase in doping concentration generates shallow acceptor levels ranging from 10 meV to 25 meV 

above the Fermi level. The study has the potential to improve the conductivity of TiO2 via different 

concentrations of Sc dopants and produce p-type TiO2 for applications in photocatalytic water-

splitting technology in low-cost and eco-friendly hydrogen production and solar cell technology  

to support future energy demand. 
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INTRODUCTION 

The catalytic process is vital in the field of materials 

chemistry because the outcome of a chemical reaction is 

controlled by the application of a suitable catalyst. 

Usually, at the nanoscale, the catalyst can provide a more  

 

 

 

powerful strategy in a given environment to achieve  

the goal due to quantum confinement [1]. Different nanoscale 

materials have been utilized for potential applications  

in various sectors [2-6]. In particular, metal oxide 
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nanoparticles such as TiO2, ZnO, WO3 have been extensively 

used for photocatalytic, catalytic, and photovoltaic 

applications due to the easier synthesis process, nontoxicity, 

high chemical stability, and abundance nature [7]. TiO2 has 

mainly three polymorphs as anatase, rutile, and brookite, out 

of those anatase and rutile are the most common in nature [8]. 

At the nanoscale, the stability of the anatase is higher than 

another polymorph therefore, it is the most interesting phase 

that has received much more attention from scientists  

and engineers due to its intriguing widespread applications  

in many fields that include photocatalysis and photovoltaic 

devices [9-13]. 

The anatase TiO2 is a wide band gap semiconductor 

material with a band gap of 3.23 eV [14]. Therefore, for its 

more efficient application, tuning of electronic and 

magnetic properties is certainly needed. Usually, the 

electronic properties are getting tuned by the controlled 

introduction of the dopants and the defects in the TiO2 

matrix that are associated with the trapping or the self-

trapping phenomenon. Subsequently, the doped TiO2 

produced would have more peculiar properties than the 

parent TiO2 system. For this reason, doped TiO2 is one of 

the most widely studied materials both theoretically and 

experimentally. The combined outcome of the theoretical 

and computation work would lead to a clear idea of the 

complex doped system for their future advancement and 

better understanding [15].  

A literature review suggested that the doped TiO2 has 

good photocatalytic activity. For instance, Livraghi et al. [16] 

have reported nitrogen-doped TiO2 nanoparticles that have 

paramagnetic centers (neutral NO radicals and  

NO2-type radicals) were capable of decomposing  

the organic pollutant using visible light. In another 

attempt, Wei et al. [15] synthesized TiO2 nanoparticles co-

doped with nitrogen and lanthanum (La3+) ions. The 

doping of nitrogen resulted in narrowing the band gap of 

TiO2 which enhanced the absorption between 350 nm to 

450 nm due to the superior catalytic activity while the 

doping of La3+ ions increases the surface area of the sample 

further increasing the absorption below 350 nm. The 

electrical conductivity of TiO2 thin film is improved via 

Sc-doping [17].  

The use of machine learning in material science, 

physics, and chemistry is increasing [18-25]. It uses 

techniques and algorithms to solve various complex 

problems which are difficult to solve using traditional 

programming methods. Various high-performance organic 

solar cells have been demonstrated using machine 

learning. In the context of TiO2, several experimental  

as well as theoretical studies have been reported to alter  

the electronic property of TiO2 [26-33]. Cavalheiro et al. [28] 

experimentally observed that the photocatalytic property 

of TiO2 is improved due to Sc-doping.  However, most  

of the previous reports lack details of Sc-doping into TiO2 

to get more insight into the observed phenomena. Details 

about the effect of an increase in dopant concentration  

on the electronic structure, whether the doping is n-type  

or p-type, calculation of impurity ionization energy,  

and localization of a charge carrier and their applications 

in solar cells are yet to be explored. Hence, a detailed 

theoretical study on the influence of varying Sc doping 

concentration into TiO2 on its electronic property is needed. 

In this article, a systematic study on the influence of 

 Sc-doping on the electronic properties of anatase TiO2  

is carried out using first-principle calculations based on 

density functional theory (DFT). The calculated results 

show the p-type doping of TiO2, and the density of states 

(DOS) in the valence band and the vicinity of Fermi level 

increases with an increase in dopant concentration. 

Furthermore, with an increase in Sc concentration, 

acceptor levels are generated above the Fermi level at the 

most symmetric G-point. Positions of acceptor energy 

levels, doping concentrations, and carrier localization are 

calculated and discussion on their importance for 

photocatalytic and solar cell applications is also well 

explored. The research findings, presented in this paper, 

underscore the impact of Sc doping concentration on the alteration 

of electronic structures of anatase TiO2. The study may be 

utilized further in various experimental work and 

applications such as using it as photocatalysts of hydrogen 

production and as active materials in solar cells. 

 

EXPERIMENTAL SECTION 

The anatase phase of TiO2 has a tetragonal structure 

with space group 141/AMD. Lattice constants are a = b = 

0.3785 nm, c = 0.9514 nm; α = β = γ = 90o [14]. The electronic 

structures of undoped and Sc-doped TiO2 were studied 

using the first principles of calculation based on density 

functional theory. DFT calculations were performed using 

the Cambridge Sequential Total Energy Package (CASTEP) 

in Materials Studio 7. The method comprised of geometry 

optimization of anatase TiO2 structures with and without  
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Fig. 1. 2×2×1 supercell models of undoped anatase TiO2 and Sc doped TiO2.(a) Undoped TiO2,  (b) TiO2 doped  

with 8.33 at.% of Sc (Ti12Sc4O32), (c) TiO2 doped with 10.43 at.% of Sc (Ti11Sc5O32), and (d) TiO2 doped with 14.58 at.% of  

Sc (Ti9Sc7O32). Sc atoms are indicated with a violet color. 

 

Sc doping. All geometry optimizations were performed in 

a uniform 3×3×1 k-point mesh in the Brillouin zone using 

plane-wave ultrasoft pseudopotential with a cut-off energy 

of 240 eV until the force on each atom is less than 0.05 eV/Å.  

The exchange-correlation is described by generalized 

gradient approximation (GGA) [34]. The lattice constants 

of the optimized TiO2 unit cell are found to be a = b = 0.381 nm, 

c = 0.958 nm which are matching with the lattice constants 

reported in the literature [14]. 

 

RESULTS AND DISCUSSION 

In the presented results, to realize the doping of Sc in 

different concentrations, a 2×2×1  supercell model was 

designed as shown in Fig. 1. The tetragonal structure of 

TiO2 consists of 4 Ti atoms and 8 O atoms in a unit cell. 

The supercell 2×2×1 designed in this study has stacks off 

our unit cells which consist of 16 Ti and 32 O atoms with 

a total of 48 atoms as shown in Fig. 1a. For different 

dopant concentrations, the different nnumbers of c atoms 

were substituted at Ti sites. The number of Sc atoms (say NSc) 

for substitution was chosen as NSc=  4 (Fig. 1b), NSc =  5 

(Fig. 1c), and NSc = 7  (Fig. 1d). The concentration  

of Sc dopants in atomic percentage was calculated as 

(NSc/NT)×100, where NT (= 48) is the total number of 

atoms in the 2×2×1  supercell. Thus, substitutions of 4, 5, and 

7 atoms of Sc correspond to concentrations of 8.33%, 

10.43%, and 14.58% respectively. Stabilities of the undoped 

and Sc-doped TiO2 were studied by performing total energy 

(ground state energy) calculations in fully relaxed geometries 

(Fig. 1) with fixed parameters. The total energy is found to be 

−40622.84 eV for undoped TiO2, −41332.18 eV for 8.33% 

Sc-doped TiO2, -41743.55 eV for 10.43% Sc-doped TiO2  and 

−41880.27 eV for 14.58% Sc-doped TiO2. It is noticed that 

ground state energies of Sc-doped TiO2 are higher than that 

of undoped TiO2, indicating that the stability of the TiO2 

increases due to Sc-doping. 

To study the electronic properties, calculations for 

band structures of undoped TiO2 and TiO2 doped with 

different concentrations of 8.33 % (Sc/TiO2 8.33%), 

10.43% (Sc/TiO2 10.43%), and 14.58 % (Sc/TiO2 14.58 

%) were performed by optimizing the structures using 

appropriate parameters detailed in the Experimental 

Section. The calculated results of band structures are 

presented in Fig. 2. The G, F, Q, and Z in band structures 

of Fig. 2 are different k-points in the Brillouin zone. From 

Fig. 2a, the band gap of undoped TiO2 which is the energy  
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Fig. 2: Band structures of (a) undoped TiO2, (b) Sc/TiO2 8.33 at.%, (c) Sc/TiO2 10.43 at.%, (d) Sc/TiO2 14.58 at.%.  

The Fermi level is set to zero and indicated by the dotted red line. 

 

between Valence Band Maximum (VBM) and Conduction 

Band Minimum (CBM) was calculated to be 2.24 eV. The VBM 

is located between F and Q while CBM is located at G. 

This indicates that TiO2 has an indirect band gap. The band 

gap of undoped TiO2 calculated in this study is well agreed 

with theoretical results by another group [35]. However, 

the calculated band gap is much smaller than the 

experimental band gap of 3.23 eV. The underestimation of 

this band gap is attributed to the intrinsic feature of  

the Generalized Gradient Approximation (GGA) adopted 

in our calculation. Fig. 2b-d shows the band structures of 

Sc-doped TiO2 with the three different concentrations 

(8.33%, 10.43%, and 14.58%) of Sc. In Figs. 2b-d, we see 

that the Valence Band (VB) is relatively flat as compared  

to the conduction band. A flat band of VB indicates  

the localization of particles (holes) due to the incorporation 

of Sc impurity. Quantum destructive interference of carrier 

wave function on the lattice can cause this carrier 

localization (effective mass of carrier tends to be infinite), 

resulting in flattening of bands in VB. Another noticeable 

feature is the increase in the number of energy levels in VB 

which makes the band denser (see Figs. 2b-d). The increased 

number of energy levels in VB due to the Sc-doping is  

an indication of p-type doping of TiO2. Doping Sc at the Ti site 

can result in p-type doping that can be understood  

as follows. The atomic number of Sc is 21 while the atomic 

number of Ti is 22. Thus, Sc has 3 valence electrons 4s2, 3d1 

while Ti has 4 valence electrons 4s2, 3d2 considering  

the participation of 3d electrons. If we replace the Sc atom  

at the Ti site, 3 electrons of Ti will be involved in making  

a covalent bond by sharing 3 electrons from Sc. However, the 

4th electron of Ti lacks one electron (absence of an electron that 

is called a hole) from Sc to share and hence to form a covalent 

bond. Thus, substituting one Sc atom into the TiO2 crystal  

at the Ti site leaves one hole or absence of an electron in the crystal. 

To get more insight into the electronic structure,  

the data in Fig. 2 is enlarged near the Fermi level (shown 

by a dotted red line) at G which is presented in Fig. 3.  For 

TiO2 doped with 8.33 % of Sc (see Fig. 3b), it is found that 

an electronic state of VB crosses the Fermi level near the  
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Fig. 3: Enlarged view of band structures shown in Fig. 2 near Fermi level for (a) undoped TiO2, (b) Sc/TiO2 8.33 at.%, 

 (c) Sc/TiO2 10.43 at.%, (d) Sc/TiO2 14.58 at.%. The Fermi level is set to zero and indicated by the dotted red line. 

 

most symmetric G point and this state has an energy of 10 

meV above the Fermi level at G point. Fig. 3d shows that 

for Sc concentration of 14.58% there are five states of VB 

near the G point which cross the Fermi Level. These 

energy levels are shallow acceptor energy levels lying in 

the range from 10 meV to 25 meV above the Fermi level. 

Thus, calculated acceptor ionization energy lies in the 

range of 10-25 meV which is of the order of thermal 

energy at room temperature. It is noticed that carrier (hole) 

concentration increases in TiO2 due to Sc doping.  

An increase in carrier concentration is one of the most 

important routes for improving the catalytic activity  

of semiconductor photocatalysts and efficiency of 

photovoltaic devices.  

The Density Of States (DOS) of undoped TiO2 and 

TiO2 doped with different concentrations of Sc were 

also calculated. The results of DOS are presented in Fig. 

4. In comparison with undoped TiO2 (see Fig. 4a), TiO2 

doped with 8.33 % of Sc (see Fig. 4b) exhibits an 

increase of density of states (DOS) in VB, indicating p-

type doping.  

This result of DOS supports the calculations of band 

structures in Fig. 2 and Fig. 3. Similarly, by increasing the 

Sc concentration to 10.43% and 14.58%, DOS continued 

to increase further in VB as shown in Fig. 4c and Fig. 4d, 

respectively. This increase in DOS is also seen in the vicinity 

of the Fermi level (see the enlarged view on the right panel), 

indicating the generation of new impurity states due to  

the Sc doping which again supports the results of band 

structures presented in Fig. 2 and Fig. 3. An increase of 

carriers (holes) due to Sc doping dramatically increases  

the electrical conductivity of TiO2 and also photocatalytic 

property as evidenced experimentally [17, 28]. Furthermore, 

we also find that the shape of DOS (considering DOS as 

Gaussian shape) changes after Sc doping as seen in the 

enlarged view on the right panels in Fig. 4.  DOS shape of 

Sc-doped TiO2 becomes narrower than that of undoped 

TiO2. This narrowing of DOS peaks of VB near Fermi 

level is more obvious for 14.58 at.% doping of Sc as shown 

in the right panel of Fig. 4(d). This indicates that the 

electronic nonlocality is less obvious, owing to the 

increase of crystal symmetry [36] and localization of holes,  
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Fig. 4: Density of states (DOS) of (a) undoped TiO2 (b) Sc/TiO2 8.33 at.%, (c) Sc/TiO2 10.43 at.%, (d) Sc/TiO2 14.58 at.%.  

Fermi level is set to zero and presented by a dotted line. Where at.% stands for atomic%. The enlarged view of DOS near  

the Fermi level is shown on the right panel. 
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which is also supported by the flattening of energy levels 

in VB as shown by band structures (see Fig. 2(b-d)). 

Charge carrier localization has a significant impact on 

solar cell devices. Localization of holes as compared to the 

electron leads to the separation of electron-hole pairs, 

which dramatically improves the efficiency of a solar cell. 

Thus, our study here may further be employed to fabricate 

new and efficient solar cells in the future.  

 

CONCLUSIONS 

In summary, the electronic properties of Sc-doped 

anatase TiO2 have been studied systematically using first-

principle calculations based on density functional theory. 

Energy band structures and density of states of undoped 

TiO2 and Sc-doped TiO2 with varying concentrations of 

dopants are calculated. The results exhibit that Sc doping 

into TiO2 causes p-type doping, which generates shallow 

acceptor levels lying in the range of 10 meV-25 meV 

above the Fermi level. It is also noticed that, with an 

increase in dopant concentration, the density of states in 

the valance band and the vicinity of the Fermi level 

increases, and the localization of holes occurs. The study 

is important because it highlights the influence of different 

concentrations of Sc doping into TiO2, and it may further 

be applied to explore the dopant concentration-dependent 

alteration of electronic properties of TiO2 for photocatalytic 

and photovoltaic applications.  
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