Amino Ethyl-Functionalized SBA-15: A Promising Adsorbent for Anionic and Cationic Dyes Removal

Document Type: Research Article

Authors

1 Department of Chemistry, Yadegar -e- Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, I.R. IRAN

2 School of Chemistry, University College of Science, University of Tehran, Tehran, I.R. IRAN

3 Department of Chemistry, Savadkooh Branch, Islamic Azad University, Mazandaran, I.R. IRAN

4 Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, I.R. IRAN

5 Department of Chemistry, Alzahra University, Tehran, I.R. IRAN

Abstract

Batch Adsorption of Acid Red 37 (AR37) and Basic Orange 2 (BO2) on amino ethyl-functionalized SBA-15 have been studied. SBA-15 was synthesized and functionalized according to the procedure in the literature. Amino ethyl-functionalized SBA-15 showed the BET surface area 520 m2/g and pore diameter 7.02 nm, based on adsorption-desorption of N2. SEM image shows lengthy fiber-like morphology for the title material. The presence of organic groups in the silica framework was demonstrated by thermogravimetric analysis. The effects of pH, contact time and dye concentration on adsorption were investigated in order to find the optimum adsorption conditions. The results have indicated that modification of adsorbent with a functional group of amino ethyl will remarkably increase the elimination of these two dyes but amino ethyl-functionalized SBA-15 has higher affinity to AR37. The experimental data were analyzed using the Langmuir and Freundlich adsorption models. The data fitted well to the Langmuir model with maximum adsorption capacities 333.3 for Acid Red 37 and 250.0 for Basic Orange 2. Finally, this methodology was applied for the removal of the pollutant dyes from textile wastewater. The results were shown that amino ethyl-functionalized nanoporousSBA-15 acts as an effective sorbent for the removal of both anionic and cationic dyes from aqueous solution.

Keywords

Main Subjects


[2] Qadri S., Ganoe, Haik A.Y., Removal and Recovery of Acridine Orange from Solutions by Use of Magnetic Nanoparticles, J. Haz. Mater., 169: 318-323 (2009).

[3] Qu S., Huang F., Yu S., Chen, G., Kong, J., Magnetic Removal of Dyes from Aqueous Solution Using Multi-Walled Carbon Nanotubes Filled with Fe2O3 Particles, J. Haz. Mater., 160: 643-647. (2008).

[4] Chen S., Zhang J., Zhang C., Yue Q., Li Y., Li C., Equilibrium and Kinetic Studies of Methyl Orange and Methyl Violet Adsorption on Activated Carbon Derived from Phragmites Australis, Desalination, 252(1): 149-156 (2010).

[5] Pugazhenthiran N., Ramkumar S., Kumar P.S., Anandan S., In-situ Preparation of Heteropolytungstic Acid on TiMCM-41 Nanoporous Framework for Photocatalytic Degradation of Textile Dye Methyl Orange, Microp. Mesop. Mater., 131(1-3): 170-176 (2010).

[6] Crini G., Non-conventional Low-Cost Adsorbents for Dye Removal: a Review, Bioresour Technol., 97(9): 1061-1085 (2006).

[7] Oei B.C., Ibrahim S., Wang S., Ang H.M., Surfactant Modified Barley Straw for Removal of Acid and Reactive Dyes from Aqueous Solution, Bioresour Technol., 100(8): 4292-4295 (2009).

[8] Jalil A.A., Triwahyono S., Adama S.H., Rahima N.D., Aziz M.A.A., Hairomc N.H.H., Razali N.A.M., Abidin M. A.Z., Khairul M., Mohamadiah A., Adsorption of Methyl Orange from Aqueous Solution Onto Calcined Lapindo Volcanic Mud,
J. Hazard. Mater., 181: 755-762 (2010).

[9] Cheung W.H., Szeto Y.S., McKay G., Enhancing the Adsorption Capacities of Acid Dyes by Chitosan Nano Particles, Bioresour Technol., 100(3): 1143-1148 (2009).

[10] Samarghandi M.R.,  Zarrabi M., Noori S., Mohammad Panahi R., Foroghi M., Removal of Acid Red 14 by Pumice Stone as a Low-Cost Adsorbent: Kinetic and Equilibrium Study,  Iran. J. Chem. Chem. Eng. (IJCCE), 31(3): 19-27 (2012).

[12] Li, L., Liu, S., Zhu, T., Application of Activated Carbon Derived from Scrap Tires for Adsorption of Rhodamine B, J. Environ. Sci., 22(8): 1273-1280 (2010).

[14] Naseri A., Barati R., Rasoulzadeh F., Bahram M., Studies on Adsorption of Some Organic Dyes from Aqueous Solution onto Graphene Nanosheets, Iran. J. Chem. Chem. Eng. (IJCCE), 34(2): 51-60 (2015).

[16] Chang S.H., Wang K.S., Li H.C., We M.Y., Chou J.D, Enhancement of Rhodamine B Removal by Low-Cost Fly Ash Sorption with Fenton Pre-Oxidation, J. Hazard. Mater., 172(2-3): 1131-1136 (2009).

[17] Zhao K., Zhao G., Li P., Gao J., Lv B., Li, D.,
A Novel Method for Photodegradation of High-Chroma Dye Wastewater via Electrochemical Pre- Oxidation, Chemosphere, 80(4): 410-415 (2010).

[19] Rajeev J., Megha M., Shalini S., Alok, M., Removal of the Hazardous Dye Rhodamine B Through Photocatalytic and Adsorption Treatments, J. Environ. Manage., 85(4): 956-964 (2007) DOI: 10.1016/j.jenvman.2006.11.002.

[20] Wang S., Li H., Xu L., Application of Zeolite MCM-22 for Basic Dye Removal from Wastewater, J. Colloid Interface Sci., 295(1): 71–78 (2006).

[21] Yuan X., Zhuo S.P., Xing W., Cui H.Y., Dai X.D., Liu X.M., Yan Z.F., Aqueous Dye Adsorption on Ordered Mesoporous Carbons, J. Colloid Interface Sci., 310(1): 83–89 (2007).

[22] Huang C.H., Chang K.P., Ou H.D., Chiang Y.C., Wang C.F., Adsorption of Cationic Dyes Onto Mesoporous Silica, Microp. Mesop. Mater., 141(1-3): 102–109 (2011).

[23] Beck J.S., Vartuli J.C., Roth W.J., Kresge C.T., Leonowicz M.E., Schmitt K.D., Chu C.T.W., Olson D.H., Sheppard E.W., McCullen S.B., Higgins J.B., Schlenker J.L., A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates, J. Am. Chem. Soc., 114(27): 10834-10843 (1992).

[24] Reinert P., Garcia B., Morin C., Badiei A., Perriat P., Tillement O., Bonneviot L., Cationic Templating with Organic Counterion for Superstable Mesoporous Silica, Stud. Surf. Sci. Catal., 146: 133 (2003).

[25] Bonneviot L., Morin M., Badiei A., Mesostructured Metal or Non-Metal Oxides and Method for Making Same, Patent WO 2001/055031 A1, (2001).

[26] Zhao D., Huo Q., Feng J., Chmelka B.F., Stucky G.D., Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, J. Am. Chem. Soc. 120(24): 6024-6036 (1998).

[27] Goscianska J., Marciniak M., Pietrzak R., Ordered Mesoporous Carbons Modified with Cerium as Effective Adsorbents for Azo Dyes Removal, Separation, and Purification Technology, 154: 236-245 (2015).

[30] Trong On D., Desplantier-Giscard D., Danumah C., Kaliaguine S., Perspectives in Catalytic Applications of Mesostructured Materials, Appl. Catal. A: Gen., 359(2): 299-357 (2001).

[31] Ganjali M.R., Daftari A., Hajiagha Babaei L., Badiei A., Saberyan K., Mohammadi Ziarani G., Moghimi A., Pico Level Monitoring of Silver with Modified Hexagonal Mesoporous Compound (MCM-41) and Inductively Coupled Plasma Atomic Emission Spectrometry, Water, Air, and Soil Pollution, 173(1): 71-80 (2006).

[33] Ganjali M.R., Hajiagha Babaei L., Badiei A., Saberian K., Behbahani S., Mohammadi Ziarani G., Salavati- Niasari M., A Novel Method for Fast Enrichment and Monitoring of Hexavalent and Trivalent Chromium at the ppt Level with Lodified Silica MCM-41 and Its Determination
by Inductively Coupled Plasma Optical Emission Spectrometry
, Quim. Nova, 29(3): 440-443 (2006).

[34] Zhu S., Zhou Z., Zhang D., Jin C., Li Z., Design and Synthesis of Delivery System Based on SBA-15 with Magnetic Particles Formed in Situ and Thermo-Sensitive PNIPA as Controlled Switch, Microp. Mesop. Mater., 106(1-3): 56–61 (2007).

[35] Badiei A., Norouzi P., Tousi F., Study of Electrochemical Behavior and Adsorption Mechanism of [Co(en)2Cl2] + on Mesoporous Modified Carbon Paste Electrode, Europ. J. Scien. Res., 12(1): 39-45.(2005).

[36] Ho K.Y., Mckay G., Yeung K.L., Selective Adsorbents from Ordered Mesoporous Silica, Langmuir, 19(7): 3019-3024 (2003).

[37] Anbia M., Asl Hariri S., Ashrafizadeh S.N., Adsorptive Removal of Anionic Dyes by Modified Nanoporous Silica SBA-3, Appl. Surface Sci., 256(10): 3228–3233 (2010). 

[40] Zhao D., Feng J., Huo Q., Melosh N., Fredrckson G.H., Chmelka B.F., Stucky G.D., Triblock Copolymer Syntheses of Mesoporous Ssilica with Periodic 50 to 300 Angstrom Pores, Science, 279(5350): 548-552 (1998).

[41] Da’n a E., Sayari A., Adsorption of Copper on Amine-Functionalized SBA-15 Prepared by Co-Condensation: Equilibrium Properties, Chem. Eng. J., 166(1): 445–453 (2011).

[42] Da’na E., De Silva N., Sayari A., Adsorption of Copper on Amine-Functionalized SBA-15 Prepared by Co-Condensation: Kinetics Properties, Chem. Eng. J.,166(1): 454–459 (2011).

[43] Badiei A., Bonneviot L., Crowther N., Mohammadi Ziarani G., Surface Tailoring Control in Micelle Templated Silica, J. Organomet. Chem., 691: 5923-5931 (2006).

[44] Langmuir I., Adsorption of Gases on Plain Surface of Mica Platinum, J. Am. Chem. Soc., 40, 136-403 (1918).

[45] Freundlich H.M.F., Over the Adsorption in Solution, J. Phys. Chem., 57: 385-470 (1906).

[46] Haghseresht F., Lu G., Adsorption Characteristic of Phenolic Compounds Onto Coal Reject-Derived Adsorbents, Energy Fuels, 12(6): 1100-1107 (1998).

[47] Zhao X.S., Lu G.Q., Whittaker A.K., Millar G.J., Zhu H.Y., Comprehensive Study of Surface Chemistry of MCM-41 Using 29Si CP/MAS NMR, FTIR, Pyridine-TPD, and TGA, J. Phys. Chem. B, 101(33): 6525-6531 (1997).

[48] Mohammadi N., Khani H., Gupta V.K., Adsorption Process of Methyl Orange Dye Onto Mesoporous Carbon Material-Kinetic and Thermodynamic Studies, J. Colloid. Interf. Sci., 362(2): 457–462 (2011).

[49] Nadaroglu H., Kalkan E., Celebi N., Azo Dye Removal from Aqueous Solutions Using Laccase-modified Red Mud: Adsorption Kinetics and Isotherm Studies, Annual Research & Review in Biology, 4(17): 2730-2754 (2014).