Zirconium Dodecylphosphonate: Selective and Constructive Catalyst for Preparation of 2-Alkyl Benzoxazoles from Aliphatic Carboxylic Acids

Document Type: Research Article

Authors

1 Islamic Azad University, Marvdasht Branch, Marvdasht, Iran

2 Department of Chemistry, Marvdasht Branch, Islamic Azad University, Marvdasht, I.R. IRAN

Abstract

In this study, zirconium dodecylphosphonate was synthesized by the reported method in scientific literature. 2-Alkylbenzoxazoles were prepared from aliphatic carboxylic acids and 2-aminophenol in the presence of this catalyst under solvent-free conditions at 100°C. Their structures were recognized by IR, 1H NMR, and 13C NMR. Then, we used aromatic carboxylic acids in the similar reaction. But, the results show aromatic carboxylic acids don’t react with 2-aminophenol. So, this method introduces a selective and constructive method for synthesis of 2-alkyl benzoxazoles without salt formation. On the other hand, this research offers several advantages such as high yields, good reaction times, easy work-up and use of a safe catalyst.

Keywords

Main Subjects


[1] Sun L.-Q., Chen J., Bruce M., Deskus J.A., Epperson J.R., Takaki K., Johnson G.L., Mahle C.D., Ryan E.,
Xu C., Synthesis and Structure-Activity Relationship of Novel Benzoxazole Derivatives as Melatonin Receptor Agonists, Bioorg. Med. Chem. Lett., 14: 3799-3802 (2004).

[2] Kumar D., Jacob M.R., Reynolds M.B., Kerwin S.M., Synthesis and Evaluation of Anticancer Benzoxazoles and Benzimidazoles Related to UK-1., Bioorg. Med. Chem., 10: 3997-4004 (2002).

[3] (a) Koci J., Klimesova V., Waisser K., Kaustova J., Dahse H. –M., Mollman U. Heterocyclic Benzazole Derivatives with Antimycobacterial in Vitro Activity, Bioorg. Med. Chem. Lett. 12: 3275-3278 (2002).

(b) Temiz O., Oren I., Sener E., Yalcin I., Ucarturk N., Synthesis and Microbiological Activity of Some Novel 5- or 6-methyl-2-(2,4-disubstituted phenyl) Benzoxazole Derivatives, Farmaco., 53: 337-341 (1998).

[5] Heynderikx A., Guglielmett R., Dubestr R., Aubard J., Samant A. Sulfinyl- and Sulfonyl-Substituted
2-Benzylbenzoxazoles and 2-benzylbenzo­thiazoles as Potential Photochromic Compounds
, Synthesis, 1112- 1116 (2003).

[6] Reser A., Trost B. M., Fleemming L. J., Saunderxs D., Mijovic M. V., Bruight A., Bogie J, Fluorescence of Aromatic Benzoxazole Derivatives, J. Am. Chem. Soc., 94: 2414-2421 (1972).

[7] (a) Seijas J. A., Vazquez T., Pilar M., Carballido R., Raquel M., Crecente C. J., Romar-Lopez L., Lawesson’s Reagent and Microwaves: A New Efficient Access to Benzoxazoles and Benzothiazoles from Carboxylic Acids under Solvent-Free Conditions, Synlett. 313-317 (2007).

(b) Maradolla M.B., Allam S.K., Mandha A., Chandramouli G.V.P., One Pot Synthesis of Benzoxazoles, Benzthiazoles and Benzimidazoles from Carboxylic Acids Using Ionic Lliquid, ARKIVOC. XV:42-46 (2008).

[9] Shi D.F., Bradshaw T.D., Wrigley S., McCall C.J., Lelieveld P., Fichtner I., Stevens M.F., Antitumor Benzothiazoles. 3. Synthesis of 2-(4-aminophenyl)  Benzothiazoles and Evaluation of Their Activities  Against Breast Cancer Cell Lines in Vitro and in Vivo, J. Med. Chem. 39: 3375-3384 (1996).

[10] Riadi Y., Mamouni R., Azzalou R., El Haddad M., Routier S., Guillaumet G., Lazar S., An Efficient and Reusable Heterogeneous Catalyst Animal Bone Meal for Facile Synthesis of Benzimidazoles, Benzoxazoles and Benzothiazoles, Tetrahedron Lett. 52 : 3492-3495 (2011).

(b) Bachhav H.M., Bhagat S.B., Telvekar V.N., Efficient Protocol for the Synthesis of Quinoxaline, Benzoxazole and Benzimidazole Derivatives Using Glycerol as Green Solvent, Tetrahedron Lett., 52: 5697-5701 (2011).

(c) Blacker A.J., Farah M.M., Hall M.I., Marsden S.P., Saidi O., Williams J.M., Synthesis of Benzazoles by Hydrogen-Transfer Catalysis, Org. Lett., 11: 2039-2042 (2009).

(e) Mohammadpoor-Baltork, I., Moghadam, M., Tangestaninejad, S., Mirkhani, V., Zolfigol, M.A., Hojati S.F., Silica Sulfuric Acid Catalyzed Synthesis of Benzoxazoles, Benzimidazoles and Oxazolo[4,5-b]pyridines under Heterogeneous and Solvent-Free Conditions, J. Iran. Chem. Soc., 5 (1): 565-570 (2008).

(g) Khalafi-Nezhad A., Panahi F., Yousefi R., Sarrafi S.,  alipour G., Magnetic Nanoparticles-supported Tungstosilicic Acid: as an Efficient Magnetically Separable Solid Acid for the Synthesis of Benzoazoles in Water, J. Iran. Chem. Soc., 11(5): 1311-1319 (2014).

[13] Terashima M., Ishii M. A Facile Synthesis of 2-Substituted Benzoxazoles, Synthesis, 484-485 (1982).

[14] (a) Hein D. W., Albeim R. J., Leavitt J. J. The Use of Polyphosphoric Acid in the Synthesis of 2-Aryl- and 2-Alkyl-Substituted Benzimidazoles, Benzoxazoles and Benzothiazoles, J. Am. Chem. Soc. 79 : 427-429 (1957).

(b) Singh G., Kaur M., Mohan C., Prashar S., Synthesis and Antimicrobial Activity of Benzoxazole Derivatives, IAJPR, 3(8): 6113-6118 (2013).

[15] Wen X., El Bakali J., Deprez-Poulain R., Deprez B., Efficient Propylphosphonic Anhydride (T3P) Mediated Synthesis of Benzothiazoles, Benzoxazoles and Benzimidazoles, Tetrahedron Lett. 53: 2440- 2443 (2012).

[16] Wang Y.,Sarris K., Sauer D.R., Djuric S.W., A Simple and Efficient One Step Synthesis of Benzoxazoles and Benzimidazoles from Carboxylic Acids, Tetrahedron Lett., 47: 4823-4826 (2006).

[18] Segawa K., Kihara N., Yamamoto J. Catalyst Design of Two-Dimensional Zirconium Phosphonates, Mol. Catal., 74: 213- 221(1992).

[19] (a) Zolfigol M.A., Salehi P., Ghaderi A., Shiri M., Tanbakouchian Z., An Eco-Friendly Procedure for the Synthesis of Polysubstituted Quinolines under Aqueous Media, J. Mol. Cat. A: Chem. 259 (1-2): 253-258 (2006).

[20] Chikhale R.V., Pant A.M., Menghani S.S., Wadibhasme P.G., Khedekar P.B., Facile and Efficient Synthesis of Benzoxazole Derivatives Using Novel Catalytic Activity of PEG-SO3H, Arab. J. Chem. In Press, (2014).

[21] Jenkins G.L., Knevel A.M., Davis C.S., A New Synthesis of the Benzothiazole and Benzoxazole Rings, J. Org. Chem., 26 (1): 274-274 (1961).