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ABSTRACT: Proton-exchange membrane fuel cells consume hydrogen and air and have high 

efficiency and power density. The present study three-dimensionally investigates the performance  

of PEMFCs with different geometries under different operating conditions. The computational fluid 

dynamics approach was adopted to solve the governing equations. In CFD, the finite volume method 

is employed to discretize and solve equations. A serpentine gas injection channel and a parallel gas 

injection channel of the same size were examined. The proposed approach was validated  

by simulating the base model at 0.6 V and three reference current densities. The present work 

primarily sought to improve the performance of PEMFCs. Also, the concentration diagram indicated 

that the water concentration rose on the cathodic side, implying reasonable water transfer 

management was reasonable. Moreover, the oxygen concentration declined on the cathodic side.  

The serpentine model was found to have a higher current density and output power than the parallel 

model. Liquid water production was lower in the serpentine model than in the parallel model.  

This prevented immersion and fuel cell interruption. Water accumulation in the middle of the PEMFC 

with the parallel channel hindered uniform temperature and current density distributions. The parallel 

model underwent a lower pressure drop than the serpentine model. Therefore, lower power was required 

to pump the gases through the parallel channel. A rise in the reference current density reduced liquid 

water production and overpotential and improved the current density distribution and temperature 

distribution in both serpentine and parallel models. 
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INTRODUCTION 

Energy shortage and environmental pollution imposed 

by different industries continue to become more serious 

due to technological advances. Therefore, researchers have 

been promoting the development of new energy 

technologies worldwide [1, 2]. Fuel cells have a quiet 

operation, generate renewable energy, and produce  

no pollution. They are the most ideal newly developed 

energy resource [3, 4]. Fuel cells convert chemical energy 

in fuel into electricity. In light of advantages such as high 

power density, safety, and a simple structure, fuel cells are 

widely used in many applications, such as appliances and 

vehicles. Many parameters, e.g., humidity, gas injection 

channel geometry, temperature, pressure, and membrane 

structure, influence the performance of a fuel cell. 

Therefore, it is essential to investigate and improve fuel 

cell performance [5, 6]. The poor adjustment of operating 

parameters may have a serious adverse impact on the 

efficiency of a fuel cell and even accelerate its efficiency 

decline. Therefore, it is crucial to study the effects of 

operating parameters on the performance of fuel cells [7]. 

Many researchers have reported useful results in recent 

years. Wang et al. [8] carried out tests on different 

operating parameters to explore their impacts on fuel cell 

performance. Santarelli et al. [9] investigated the behavior 

of a proton-exchange membrane fuel cell (PEMFC) using 

operating parameters, such as humidity, pressure, and 

temperature. They concluded that a rise in pressure could 

improve PEMFC performance. Yang et al. [10] studied the 

impacts of operating parameters on a fuel cell with a close-

end anode. Kim et al. [11] evaluated the effects of pressure 

under different conditions. They found that the output 

voltage increased as the operating pressure increased. 

Kadjo et al. [12] analyzed the effects of pressure and 

temperature on the electrical performance of a fuel cell. 

Kahveci et al. [13] found that a rise in the operating 

pressure enhanced fuel cell performance. The performance 

of the fuel cell began to decline when the temperature 

exceeded a threshold, and a reduction in the relative 

humidity of the cathode could help improve fuel cell 

performance. Zeroual et al. [14] studied the effects of 

pressure on fuel cell performance. The results indicated 

that a rise in pressure improved water discharge and 

increased the reaction rate. Through numerical 

simulations, Kim et al. [15] found that the input humidity 

of the cathode and anode had significant effects on the 

performance of a fuel cell, and excessive humidity  

in the cathode would induce floods in the cathodic catalyst 

layer. Zhang et al. [16] explored the effects of relative 

humidity, air stoichiometry, and backpressure on PEMFCs.  

It was found that the overall performance and current 

distribution uniformity improved as relative humidity 

increased. Chavan et al. [17] analyzed the impacts of 

hydrogen flow, hydrogen humidity, and partial hydrogen 

pressure on the performance of fuel cells by controlling 

input parameters. Wang et al. [18] recommended efficient 

cathode humidity reduction, anode stoichiometry enhancement, 

and equal anode and cathode input pressure rises to improve 

fuel cell performance. Guvelioglu et al. [19] simulated a fuel 

cell using MATLAB and concluded that a rise in the 

hydrogen rate and a decline in the airflow with 100% 

humidity improved fuel cell performance. Gomez et al. [20] 

humidified the input gas of the fuel cell to maintain better 

water management. Boulon et al. [21] prevented immersion  

in the fuel cell or a dried membrane by controlling  

the humidity of input air. Wasterlain et al. [22] found that 

a higher operating temperature and airflow velocity could 

increase the output voltage; however, membrane water 

deficiency was likely to occur. Ahmadi et al. [23-25] 

evaluated fuel cell performance and species distributions 

by investigating different parameters. Apart from the 

effects of operating parameters, the geometry of the gas 

injection channel has a significant effect on the efficiency 

improvement of a fuel cell. Ahmed et al. [26] developed  

a numerical model to evaluate the performance of 

PEMFCs at high current densities for different gas 

injection channel geometries. It was found that the 

rectangular channel section generated higher voltage, 

while the trapezoidal channel had a more uniform 

distribution. Jabbary et al. [27] investigated the effects of 

rhomboid channels on the performance of PEMFCs. 

Several studies have been conducted on the effects of 

serpentine channels on PEMFC performance [28-30]. 

Ozdemir et al. [31] studied U-shaped, Z-shaped, and 

serpentine gas injection channels. Samanipour et al. [32] 

examined cylindrical fuel cells and concluded that the 

cylindrical model outperformed the base model. 

Mohammedi et al. [33] studied the effects of density, 

pressure drop, and power in three-dimensional trapezoidal 

models. Sadeghi et al. [34] numerically simulated different 

three-dimensional PEMFCs, including a sinusoidal model. 

Sheikhmohammadi et al. [35] proposed new designs  of
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Table 1: Geometric characteristics of the base model [28]. 

Parameters Value 

Channel height 1⨯10-3  m 

Channel width 0.8⨯10-3  m 

Channel area 8⨯10-7  m2 

Effective land area 11⨯10-4  m2 

CL thickness 0.03⨯10-4  m 

GDL thickness 2.5⨯10-4  m 

Membrane thickness 0.5⨯10-4  m 

 

 
Fig. 1: PEMFC base model. 

 

the gas channel and investigated PEMFC performance.  

As the designing of the gas channels is one of the key 

parameters in the output performance of the PEMFC, It is 

necessary to improve the performance of fuel cells based 

on operating conditions and gas channel geometry. 

Therefore, the present study numerically compares PEMFCs 

with a parallel and a serpentine flow field, investigating the 

impacts of different operating parameters on PEMFC 

performance. In the present work, the new design of the 

PEMFC is introduced. The new design that is introduced 

in this study has a lesser pressure drop compared with the 

base model. This fact leads to less power consumption to 

pump the species into the reaction area. 

 

THEORETICAL SECTION 

Mathematical model 

A three-dimensional serpentine model was selected  

as the base model, as shown in Fig. 1. Table 1 reports the 

geometric description of the base model. 

 

Model assumptions 

(1) The reactants are ideal, and the ideal gas law holds.  

(2) The fluid flow is incompressible and the model is 

three-dimensional. 

(3) The fluctuations induced by air and hydrogen 

transfer are neglected. 

(4) The fuel cell operates in a steady state. 

(5) The fuel cell has a constant temperature, neglecting 

the gradient effect. 

(6) The membrane is completely impermeable to the reactants. 

(7) The porous medium of the diffusion layer, catalyst 

layer, and proto-exchange layer is isotropic. 
 

Governing equations 

Table 2 shows the governing equations of a PEMFC, 

including the continuity, momentum, species, and 

potential equations.  

In the continuity equation, ρ denotes the mixture 

density, while ε is the effective porosity of the porous 

layer. Also, μ is the viscosity of the gas mixture  

in the motion equation, and Su is the source term of  

the momentum equation. Further details on the governing 

equations are provided in earlier works [2, 7, 25, 36].  

As these equations have the source terms in the different 

layers of the PEMFC, and the source term of the equation 
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Table 2: Governing equations. 

Term Equation 

continuity (∇. ρu) = 0 

momentum 
1

(εeff)2
∇. (ρuu) = −∇P + ∇. (μ∇u) + Su 

species ∇. (uCk) = ∇. (Dk
eff∇Ck) + Sk 

potential ∇. (Ke
eff∇Φe) + SΦ = 0 

 

Table 3: Source/Sink term for conservation equations [24]. 

 Momentum species charge 

Flow channels Su = 0 SK = 0 S = 0 

Bipolar plates Su = −
μ

K
u SK = 0 S = 0 

GDLs Su = −
μ

K
u SK = 0 S = 0 

Catalyst layers Su = 0 SK = −∇(
nd
F
I) −

SKJ

nF
 S = j 

Membrane Su = 0 SK = −∇ ∙ (
nd
F
I) S = 0 

 

Table 4. Boundary conditions. 

Assumption of the boundary condition Location in fuel cell geometry 
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for the layers are listed in Table 3. 

The boundary conditions of the PEMFC for all regions 

are presented and listed in Table 4. 

Solution 

Computational Fluid Dynamics (CFD) was adopted  

to solve the governing equations. The equations are discretized).  
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Fig. 2: Solution algorithm. 

 

and solved using the Finite Volume Method (FVM The 

SIMPLE algorithm was employed to couple pressure and 

velocity [37]. The convergence criterion was defined to be 

met when the solution residuals of the equations reduced 

below 10-3 in the continuity equation, 10-6 in the energy 

equation, and 10-10
 in the potential equation and when the 

output current remained unchanged for at least four 

iterations [38]. Fig. 2 depicts the solution algorithm.  

To find the optimal mesh size, a coarse grid was initially 

tested. It was found that the use of finer elements changed the 

computation output. A rise in the number of elements to 

700,000 led to no significant change in the output. Therefore, 

a total of 500,000 elements were employed to save 

computation time. Fig.3a indicates the grid independence 

check results. The three-dimensional grid of the studied 

domain is presented in Fig. 3b. Also, in this figure the domain 

and the shape of the base model is clear. 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. Mesh independence check results (a), the 3D grid  

of the model (b). 

 

Table 5 reports the operating parameters. They were 

selected based on the model proposed by Jeon et al. [28]. 

This study utilized a computer with a 16-core CPU, 24GB 

RAM, and a 100GB HDD. Each simulation round was 

completed in nearly 3 hours. 

 

RESULTS AND DISCUSSION 

The simulation results are compared to Jeon et al. [28]. 

According to Fig. 4, the numerical results were in good 

agreement with F. This demonstrates the validity of the 

proposed model. The present study numerically and 

comparatively analyzed a parallel flow field and a 

serpentine flow field (the base model), as shown in Fig. 5.  

The effects of the reference current density were explored 

for both models. In general, the same reaction area, model 

assumptions, and boundary conditions (except for the anode 
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Table 5: Parameters and performance conditions [28]. 

Parameter Value 

Mass fraction of H2 at anode inlet 0.115 

Mass fraction of H2O  at anode inlet 0.885 

Mass fraction of O2 at cathode inlet 0.183 

Mass fraction of H2O at cathode inlet 0.215 

Relative humidity 1 

Open circuit voltage (V) 0.96 

Pressure (kPa) 101 

Temperature (oC) 80 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Polarization curve of model validation. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5: Base model and parallel model. 

 

and cathode inflow rates) were applied to find the optimal 

model.  

Table 6 represents the inflow rates at different 

reference current densities. 

Fig. 6 compares the polarization curves of the models. 

The numerical results indicate that the serpentine model 

had a higher current density and output power than  

the parallel model, as shown in Figs. 7 and 8. 

Table 6: Inflow rates at different reference current densities. 

Parameter Value 

Iref  (A/m2) 6000 12000 18000 

Mass flowrate at 

anode inlet (kg/s) 
7.13265×10-7 1.42653×10-6 2.13979×10-6 

Mass flowrate at 

cathode inlet 

(kg/s) 

6.1064×10-6 1.22128×10-5 1.83192×10-5 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Polarization curves of different models. 

 

As can be seen in Figs. 7 and 8, the base model 

produces more current density and output power density 

than the parallel model in the same cell voltage and  

the same operating condition. The maximum current 

density is 1.51 A/cm2 at 0.4 V and the lowest is 0.03 A/cm2 

at 0.8 V.  

Figs. 9-11 illustrate the hydrogen and water mass 

fractions on the anodic side for both models. Hydrogen and 

water were found to have physically reasonable 

distributions along the PEMFC. The hydrogen and water 

mass fractions on the anodic side were observed to rise as 

the reference current density increased. The maximum 

water mass fraction on the anode side is 0.841 and  

the lowest is 0.789.  

Figs. 12-15 illustrate the oxygen and water mass 

fractions on the cathodic side for both models. The water 

distributions on the cathodic and anodic sides should have 

a balanced interaction; that is when the water 

concentration declines along the anode due to the transfer 
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Fig. 7: Current density for different voltages. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Output power density for different voltages. 
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Iref = 18000 A/m2 

 

Fig. 9: Hydrogen mass fraction contours on the anode side. 

 

of H+ protons into the electrochemical reaction site, the water 

concentration on the cathodic side should rise due to  

the combination of molecules with oxygen, electrons, and H+. 

A rise in the reference current density was observed to 

raise the oxygen and water mass fractions on the anodic 

side. The maximum water mass fraction on the cathode 

side is 0.355 and the lowest mass fraction of oxygen is 0.069.  

The outflow rate is the most important factor in  

the performance evaluation of a PEMFC. Fig. 16 depicts 

the average current density for the models. As can be seen, 

the base (serpentine) model had a larger average current 

density at Iref=18000 A/m2 and a uniform distribution.  

In the parallel, however, the current density is not uniformly 

distributed due to water accumulation in the middle  
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Fig. 10: Average water mass fraction on the anode side. 
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Iref = 6000 A/m2 

Parallel 
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Iref = 18000 A/m2 

Fig. 11:Water mass fraction contours on the anode side. 

 

of the PEMFC, particularly at Iref=6000 A/m2. Fig. 17 

compares the models in the power distribution. As can be 

seen, power generation increased as the output current 

increased. The power generation of a PEMFC is calculated 

as   𝑃𝑓𝑐 = 𝐼 × 𝑉 × 𝐴𝐸𝐿, in which I is the generated current, 

V is the generated voltage, and AEL is the effective area  

of the electrode. The maximum power generation  

for 0.889 A/cm2 is 5.87 W. 

Pressure drop is an important challenge in a fuel cell and 

prevents the flow of fluids to the end of the channel at sufficient 

pressure. This leads to a non-uniform distribution of the current 

density. As can be seen in Figs. 19 and 20, the base model 

underwent a larger pressure drop, leading to performance 

deterioration. On the other hand, the parallel model experienced 

a lower drop in pressure along with the fuel cell. The lowest 

pressure drop in the parallel model for 6000 A/m2 is 127.11 Pa. 
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Fig. 12: Average O2 mass fraction in the cathode side. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13: Average H2O mass fraction in the cathode side. 
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Iref = 12000 A/m2 

 
 

Iref = 18000 A/m2 
 

Fig. 14: Oxygen mass fraction contours on the cathode side (Catalyst Layer). 

 

Fig. 21 depicts the flow velocity. The flow velocity 

increased as the reference current density increased. 

Fig. 22 shows the temperature distribution of the 

flow field configuration in the catalyst layer on the 

cathodic side. As can be seen, the temperature 

declined from the inlet to the outlet in the parallel 

model due to water accumulation, preventing  

a uniform temperature distribution. In the base model, 

on the other hand, the temperature was uniformly 

distributed on the PEMFC. 
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Fig. 15: Water mass fraction contours on the cathode side (Catalyst Layer). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16: Average current density distribution(A/cm2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17: Power generation for difference models (W). 

 

The temperature in this type of fuel cell is uniform 

overall the stack and it is about 3 to 10 degrees rise  

in the intense reaction area, as can be seen in the figure. 

Also, the reference current density is one of the key 

criterion parameters that calculate the inlet concentration 

of the species and output current density. In other words, 

by increasing the reference current density the activity of  

the fuel cell is enhanced too and the temperature is raised 

in the fuel cell. The temperature especially on the cathode 

side has an important role in the performance of  

the PEMFC. If the temperature rises in the reaction area  

at the interface of the cathode catalyst and the membrane,  
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Fig. 18: Current density distribution for difference models (A/m2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19: Fuel cell pressure drop (Pa) for different models on the cathode channel. 

 

it prevents to accumulation of water on the cathode  

side and prevents the water flooding phenomena.  

But, if the temperature is not controlled and exceeds 

the maximum desired value, it causes dehydration  

of the membrane which affects the performance  

of the membrane reversely. As can be seen, in the  

base model the temperature distribution is more uniform 

than the parallel model which improves the  

performance of the cell. Against, the parallel model, it is 

obvious that in the lower reference current density (6000), 

some regions of the reaction area have lesser temperature 

than the average of the cell. In this region, water 

accumulation can occur especially in the lower  

cell voltages. 
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Fig. 20: Fuel cell pressure drop (Pa) contours for difference models on cathode channel. 
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Fige. 21: Flow velocity contours (m/s) contours for difference models on the cathode channel. 



Iran. J. Chem. Chem. Eng. Ashrafi H. et al. Vol. 42, No. 1, 2023 

 

204                                                                                                                                                                    Research Article 

 

   

Base model 

   

 

 

Iref = 6000 A/m2 

Parallel 

 

Iref = 12000 A/m2 

 

 

Iref = 18000 A/m2 

Fig. 22: Temperature (K) distribution contours for difference models in Catalyst Layer. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 23: Average overpotential (V). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 24: Liquid water activity. 

 
Furthermore, the average overpotential reduced as  

the reference current density increased (Fig.23). According to 

Fig. 24, liquid water production was lower at a larger current 

density. The parallel model had lower water production than 

the serpentine model. The maximum over potential  

in the parallel model for 6000 A/m2 is 0.228 V. 

CONCLUSIONS 

PEMFC models with serpentine and parallel gas 

injection channels were designed and numerically 

simulated using CFD and FVM. The models were validated 

as the numerical results were in good agreement with 

earlier works. The simulation was performed at 0.6 V  
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for reference current densities of 6000, 12000, and 18000 A/m2 

to investigate the species distribution in the PEMFC, the 

pressure drop along the PEMFC, temperature and velocity 

distributions, current density, power density, liquid water 

production, and immersion. It was observed that the 

hydrogen and water concentrations decreased on the anode 

side, and water was produced on the cathode side due to 

reduced oxygen. The current density and output power 

were found to be higher in the serpentine model than  

in the parallel model due to a uniform current density  

on the serpentine PEMFC. The parallel model was observed 

to experience higher water accumulation, leading to 

immersion and PEMFC interruption. The parallel model 

underwent a lower pressure drop along the PEMFC and 

required lower additional power to pump the gases into the 

channels. The serpentine model had a more uniform 

temperature distribution. The distributions of the temperature, 

velocity and current density along the PEMFC were more 

uniform as higher reference current densities. The present 

study helps fuel cell designers and manufacturers exploit 

efficient and effective operating conditions and an optimal 

channel shape to enhance PEMFC performance.  
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