Removal of Zinc (II) Ions by Wheat Bran and Waste Coffee as Low-Cost Biosorbents

Document Type : Research Article

Authors

1 Department of Chemistry, University of Prishtina, 10000 Prishtina, Republic of KOSOVA

2 Academy of Arts and Sciences of Kosova, 10000 Prishtina, Republic of KOSOVA

Abstract

In this research, wheat bran and waste coffee without any chemical treatment are used as low-cost biosorbents for the removal of zinc ions from an aqueous solution. Parameters such as contact time, adsorbent dose, initial concentration, and pH were studied. To describe adsorption equilibrium, Langmuir and Freundlich isotherms were used. Experimental results confirm that the adsorption of zinc ions on waste coffee fits well with the Langmuir isotherm while Freundlich isotherm is a better fit for wheat bran. The maximum capacity of zinc ions adsorbed, with the Langmuir model for wheat bran is a bit higher (qmax= 9.01 mg/g) than waste coffee (qmax= 6.41 mg/g). The thermodynamic parameters, enthalpy (ΔHo), entropy (ΔSo), and Gibbs free energy (ΔGo), provide that the adsorption process is exothermic, spontaneous, and favorable for both used biosorbents. The structure of both biosorbents was analyzed by the pH of the point zero charge (pHPZC) and FT-IR spectra.

Keywords

Main Subjects


[1] Lakherwal D., Adsorption of Heavy Metals: A Review, Inter. J. Environ. Reser. Develo., 4(1): 41-48 (2014).
[2] Renu, Agarwal M., Singh K., Heavy Metal Removal from Wastewater Using Various Adsorbents: A Review, J. Wat. Reus. Desal., 7(4): 387-419 (2017).
[3] Mehdipour S., Vatanpour V., Kariminia H. R., Influence of Ion Interaction on Lead Removal by a Polyamide Nanofiltration Membrane, Desal., 362(4): 84–92(2015).
[4] Mohamed Amine B., Ahmed Y., Aicha H., Abdelghani B., Adsorption of Zinc and Lead onto Sediments of the Dam Chorfa, Iran. J. Chem. Chem. Eng. (IJCCE) 38(6): 127-133 (2019).
[5] Mulana F., Mariana, Muslim A., Mohibah M. Halim Ku K.H., Removal of Zinc (II) Ion from Aqueous Solution by Adsorption onto Activated Palm Midrib Bio-Sorbent, Mater. Scie. Eng., 334(1): (2018).
[6] Nassef E., Eltaweel Y., Removal of Zinc from Aqueous Solution Using Activated Oil Shale, J. Chem., 2019(6): 1-9 (2019).
[7] Salihi I., Kutty SH. R. M., Isa M. H., Amin N., Zink Removal from Aqueous Solution Using Novel Adsorbent MISCBA, J. Wat. Sanitat.Hygj. Develop. 6(3): 377-388 (2016).
[8] Tran Ch. V., Quang D. V., Thi H. Ph. N., Truong T. N., La D. D., Effective Removal of Pb(II) from Aqueous Media by a New Desing of Cu-Mg Binary Ferrite, ACS Omega., 5(13): 7298-7306 (2020).
[9] Rao K. S., Mohapatra M., Anand S., Venkateswarlu P., Review on Cadmium Removal from Aqueous Solutions, Intern. J. Engin., Sci. Techn. 2(7): 81-103 (2010).
[10] Hasar H., Cuci Y., Obek E., Dilekoglu M.F., Removal of Zinc(II) by Activated Carbon Prepared from Almond Husks under Different Conditions, Adsor. Sci. &Techn., 21(9): 799-808 (2003).
[11] Gakwisiri Ch., Raut N., Al-Saadi A., Al-Aisri Sh., Al-Ajmi A., A Critical Review of Removal of Zinc from Wastewater, Proceed. Worl. Cong. Eng., 1: 627-630 (2012).
[12] Senthil Kumar P., Adsorption of Zn(II) Ions from Aqueous Environment by Surface Modified StrychnosPotatorum Seeds, a Low Cost Adsorbent, Pol. J.  Chem. Techn., 15(3): 35-41 (2013).
[13] Chen H., Wei Y., XieCh., Wang H., Chang Sh., Xiong Y., Du Ch., Xiao B., Yu G., Anaerobic Treatment of Glutamate-Rich Wastewater in a Continuous UASB Reactor: Effect of Hydraulic Retention Time and Methanogenic Degradation Pathway, Chemosph., 245(23): 2-29 (2020). 
[15] Huang J., Wang J., Jia L., Removal of Zinc(II) from Livestock and Poultry Sewage by a Zinc(II) Resistant Bacteria, Scientific Reports, 10(1): 21027 (2020).
[16] Hawari A., Rawajfih Z., Nsour N., Equilibrium and Thermodynamic Analysis of Zinc Ions Adsorption by Olive Oil Mill Solid Residues, J. Hazard. Mater., 68(2): 1284–1289(2009).
[17] Alalwan H.A., Kadhom M.A., Alminshid A.H., Removal of Heavy Metals from Wastewater Using Agricultural Byproducts, J. Wat. Supp.: Resea.Techn.-AQUA., 69(2): 99-112 (2020).
[18] Haythem B., Abdelkader K., Mohamed T., Adel M., Ahmed Hichem H., Study of the Adsorption and Desorption of Zn(II) and Pb(II) on CaF2 Nanoparticles, Iran. J. Chem. Chem. Eng. (IJCCE), 39(5): 190-201 (2020).
[19] Gebretsadik H., Gebrekidan A., Demlie L., Removal of Heavy Metals from Aqueous Solutions Using Eucalyptus Camaldulensis: An Alternate Low Cost Adsorbent, Cogent. Chem., 6(1): 1-16 (2020).
[20] Bartczak P., Norman M., Klapiszewski Ł., Karwan´ska N., Kawalec M., Baczyn´ska M., Wysokowski M., Zdarta J., Ciesielczyk F., Jesionowski T., Removal of Nickel(II) and Lead(II) Ions from Aqueous Solution Using Peat as a Low-Cost Adsorbent: A kinetic and equilibrium study, Arab. J. Chem., 11(8): 1209-1222(2018).
[22] Lim H. K., Teng T. T., Ibrahim M. H., Ahmad A., Chee H T., Adsorption and Removal of Zinc (II) from Aqueous Solution Using Powdered Fish Bones, APCBEE Proce., 1: 96-102(2012).
[23] Thaçi B. S., Gashi S. T., Reverse Osmosis Removal of Heavy Metals from Wastewater Effluents Using Biowaste Materials Pretreatment, Pol. J. Environ. Stud., 28(1): 337-341(2019).
[24] Mansouri S., Elhammoudi N., Aboul-Hrouz S., Mouiya M., Makouki L., Chham A., Abourriche A., Hannache H., Oumam M., Elaboration of Novel Adsorbents from Moroccan Oil Shale Using Plackett– Burman Design, Chem. Internat.,4(11): 7–14 (2018).
[25] Alalwan H.A., Alminshid A.H., Aljaafari H.A., Promising Evolution of Biofuel Generations. Subject Review, Renew. Energ. Focus., 28: 127–139 (2019).
[26] Daci-Ajvazi M., Thaçi B., Daci N., Gashi S., Evaluation of Packed Adsorption Column for Lead, Cadmium and Zinc Removal Using Different Biosorbents, J. Environ. Protec. Ecol., 19(3): 997–1007 (2018).
[27] Lalhruaituanga H., Jayaram K., Prasad M.N.V., Kumar K.K., Lead (II) Adsorption from Aqueous Solution by Raw and Activated Charcoals of Melocanna Baccifera Roxburgh (Bamboo) – A Comparative Study, J. Hazard. Materi., 175(1): 311-318 (2010).
[28] Djawad F., Djamel N., Mekatel E., Samira A., Adsorption of Ni2+ Ions onto NaX and NaY Zeolites: Equilibrium, Kinetics, Intra Crystalline Diffusion and Thermodynamic Studies, Iran. J. Chem. Chem. Eng. (IJCCE), 38(6): 63-81 (2019).
[29] GabelmanA., Adsorption Basics, part I, American Institute of Chemical Engineers (2017).
[30] Anwar J., Shafique U., Waheed-uzZ., Salman M., Dar A., Anwar S., Removal of Pb(II) and Cd(II) from Water by Adsorption on Peels of Banana, Biores. Technol., 101(6): 1752-1755 (2010).
[31] Ozer A., Tumen F., Cd(II) Adsorption from Aqueous Solution by Activated Carbon from Sugar Beet Pulp Impregnated with Phosphoric acid, Fresen. Environ. Bull., 12(9): 1050-1058 (2003).
[32] Pujol D., Gominoho J., Olivella M A., Villaescusa I., Pereira H., The Chemical Composition of Exhausted Coffee Waste, Industrial Crops and Products, 50: 423-429 (2013).
[33] Thaçi B., Gashi S., Daci N., Daci-Ajvazi M., Hybrid Processes Evaluation of Pb(II) Removal from Wastewater Effluents, Pol. J. Environ. Stud. 30(4): 3261-3267 (2021).
[34] Senobari S., Nezamzadeh-Ejhieh A., A Comprehensive Study on the Enhanced Photocatalytic Activity of CuO-NiO Nanoparticles: Designing the Experiments, J. Mol. Liq., 261: 208- 217 (2018).
[35] Nagahashi E., Ogata F., Nakamura T., Kawasaki N. Removal of Zinc Ions Aqueous Solutions by Adsorption on Virgin and Calcined Lignin, BPB Reports, 1: 25-31 (2018).
[36] Hassan A. A., Removal of Cadmium from Aqueous Solution by Wheat Bran and Sunflower Shell, J. Babyl. Univers.Engin.Scien., 3(21): 866-876 (2013).
[39] Fernando A., Monteiro S., Pinto F., Mendes B., Production of Biosorbents from Waste Olive Cake and its Adsorption Characteristics for Zn2+ ion, Sustain., 1(2): 277-297 (2009).
[40] Singh C. K., SahuN. J., Mahalik K. K., MohantyC. R., Mohan B. R., MeikapB. C., Studies on the Removal of Pb(II) from Wastewater by Activated Carbon Developed from Tamarind Wood Activated with Sulphuric Acid, J. Hazard. Mater., 153(1): 221-228, (2008).
[42] Oliveira W. E., Franca A. S., Oliveira L. S., Rocha S. D., Untreated Coffee Husk as Biosorbents for the Removal of Heavy Metals from Aqueous Solutions, J. Hazard.Mater.,152(3): 1073-1081 (2008).
[43] Singh R.S., Singh V.K., Tiwar P.N., Singh U.N., Sharma Y.C., An Economic Removal of Ni(II) from Aqueous Solutions Using an Indigenous Adsorbent, The open Environ. Engin. J. 2009(2): 30-36 (2009).
[44] Thakur L.S., Parman M., Adsorption of Heavy Metal (Cu2+, Ni2+, and Zn2+) from Synthetic Waste Water by Tea Waste Adsorbent, Internat. J. Chem. Physic. Science., 2(6): 6-19 (2013).
[45] Piccin J. S., Dotto G. L. and Pinto L. A. A., Adsorption Isotherms and Thermochemical Data of FD and C RED N° 40 Binding by Chitosan, Brazil. J. Chem. Engin., 28(2): 295-304 (2011).
[46] Ergüvenerler F., Targan Ş., Tirtom V. N., Removal of Lead from Aqueous Solutions by Low Cost and Waste Biosorbents (Lemon, Bean and Artichoke Shells),Wat. Scien.&Techn., 81(1): 159-169 (2020).
[47] Ayawei N., Angaye S. S., Wankasi D., Dikio E. D., Synthesis, Characterization and Application of Mg/Al Layered Double Hydroxide for the Degradation of Congo Red in Aqueous Solution, Open J. Phys. Chem., 5(3): 56–70 (2015). 
[48] Ayawei N., Ekubo A. T., Wankasi D., Dikio E. D., Adsorption of Congo Red by Ni/Al-CO3: Equilibrium, Thermodynamic and Kinetic Studies, Orient. J. Chem., 31(30): 1307–1318(2015).
[49] Basu M., Guha A. K., Ray L., Adsorption of Lead on Cucumber Peel, J. Clean. Prod., 151(1): 603-615 (2017).
[50] Wysokowski M., Klapiszewski L., Moszyisik D., Bartczak P., Szatkowski T., Majchrzak I., Siwinska-Stefanska K., Bazhenov VV., Jesionowski T., Modification of Chitin with Kraft Lignin and Development of New Biosorbents for Removal of Cadmium(II) and Nikel(II) Ions, Mari. Drag., 12: 2245-2268 (2014).
[51] Ahmad A., Rafatulla M., Sulaiman O., Ibrahim M H, Chii Y Y., Siddique B M., Removal of Cu(II) and Pb(II) Ions from Aqueous Solutions by Adsorption on Sawdust of Meranti Wood, Desal., 247(1): 636-646 (2009).
[52] Ogata F., Imai D., Kawasaki N., Cationic Dye Removal from Aqueous Solution by Waste Biomass Produced from Calcination Treatment of Rice Bran, J. Environ. Chem. Eng., 3: 1476-1485 (2015).
[53] Tejado A., Pen C., Labidi J., Echeverria J M., Mondragon I., Physico-Chemical Characterization of Lignins from Different Sources for Use in Phenol-Formaldehyde Resin Synthesis, Bioresou. Tech. 98(8): 1655-1663 (2007).
[55] Sandesh K., Kumar R.S., JagadeeshBabu P.E., Rapid Removal of Cobalt (II) from Aqueous Solution Using Cutlet Fish Bones; Equilibrium, Kinetics and Thermodynamic Study, Asia-Pac. J. Chem. Eng., 8(1): 144–153 (2013).
[56] Singha B., Das S. K., Biosorption of Cr(VI) Ions from Aqueous Solutions: Kinetics, Equilibrium, Thermodynamics and Desorption Studies, Collo. Surf. B: Biointer., 84(1): 221–232(2011).
[58] Varlikli C., Bekiari V., Kus M., Boduroglu N., Oner I., Lianos P., Lyberatos G., Icli S., Adsorption of Dyes on Sahara Desert Sand, J. Hazar. Mater., 170(1): 27- 34 (2009).