Controlled Green Synthesis of Silver Nanoparticles Using Culture Supernatant of Filamentous Fungus

Document Type: Research Article

Authors

1 Bio-Refinery Group, Faculty of New Technologies Engineering, Shahid Beheshti University, Po.Box 47815-168, Mazandaran, Zirab Campus, I.R. IRAN

2 Biotechnology group, Chemical Engineering Faculty, Tarbiat Modares University, P.O. Box 14115-114 Tehran, I.R. IRAN

3 Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box 15815-3538 Tehran, I.R. IRAN

Abstract

The focus of this study was to evaluate the effects of some parameters influencing the size and size distribution of the silver nanoparticles (AgNPs) produced by culture supernatant of Fusarium oxysporum. Results revealed that in the reaction solution containing equal volume of silver nitrate and culture supernatant; pH, temperature, and light source can control the AgNP’s characteristics. The particle size decreased with an increase in pH. The average size of AgNPs, formed in reaction solutions, decreased as temperature increased from 40 °C to 121 °C. The smallest AgNPs with the highest polydispersity (average size of 14nm and PDI of 0.37) were obtained in reaction solution incubated at 121 °C. Also, the use of UV radiation in reaction solution resulted in the production of the very small AgNPs with the narrowest size distribution (average size of 9.7nm and PDI of 0.2). X-ray diffraction analysis verified the crystalline nature of synthesized AgNPs. Also, transmission electron microscopy analysis confirmed the production of spherical shape nanoparticles.

Keywords

Main Subjects


[1] Zhang X., Yan S., Tyagi R.D., Surampalli R.Y., Synthesis of Nanoparticles by Microorganisms and Their Application in Enhancing Microbiological Reaction rates, Chemosphere, 82: 489-494 (2011).

[2] Shivaji S., Madhu S., Singh S., Extracellular Synthesis of Antibacterial Silver Nanoparticles Using Psychrophilic Bacteria, Process Biochem., 46: 1800-1807 (2011).

[3] Otari S.V., Patil R.M., Nadaf N.H., Ghosh S.J., Pawar S.H., Green Biosynthesis of Silver Nanoparticles From an Actinobacteria Rhodococcus sp, Mater. Lett., 72: 92-94 (2012).

[4] Das V.L., Thomas R., Varghese R.T., Soniya E.V., Mathew J., Radhakrishnan E.K., Extracellular Synthesis of Silver Nanoparticles by the Bacillus Strain CS 11 Isolated From Industrialized Area, 3 Biotech, 4: 121-126 (2013).

[5] Musarrat J., Dwivedi S.,S ingh B.R., Al-Khedhairy A.A., Azam A., Naqvi A., Production of Antimicrobial Silver Nanoparticles in Water Extracts of the Fungus Amylomyces rouxii Strain KSU-09, Bioresour. Technol., 101: 8772-8776 (2010).

[6] Zaki S., El Kady M.F., Abd-El-Haleem D., Biosynthesis and Structural Characterization of Silver Nanoparticles From Bacterial Isolates, Mater. Res. Bull., 46: 1571-1576 (2011).

[7] Malhotra A., Dolma K., Kaur N., Rathore Y.S., Ashish,Mayilraj S., Choudhury A.R., Biosynthesis of Gold and Silver Nanoparticles Using a Novel Marine Strain of Stenotrophomonas, Bioresour. Technol., 142: 727-731 (2013).

[8] Yousefi N. ,Pazouki M., Alikhani Hesari F., Alizadeh M., Statistical Evaluation of the Pertinent Parameters in Bio-synthesis of Ag/MWf-CNT Composites Using Plackett-Burman Design and Response Surface Methodology, Iran. J. Chem. Chem. Eng. (IJCCE), 35: 51-62 (2016).

[9] Wei X., Luo M., Li W.,Yang L., Liang X., Xu L., Kong P., Liu H., Synthesis of Silver Nanoparticles by Solar Irradiation of Cell-Free Bacillus amyloliquefaciens Extracts and AgNO3, Bioresour. Technol., 103: 273-278 (2012).

[10] Ramamurthy C.H., Padma M., Mariya Samadanam I.D., Mareeswaran R., Suyavaran A., Kumar M.S., Premkumar K., Thirunavukkarasu C., The Extracellular Synthesis of Gold and Silver Nanoparticles and Their Free Radical Scavenging and Antibacterial Properties, Colloids Surf., B, 102: 808-815 (2013).

[11] Narayanan K.B., Sakthivel N., Facile Green Synthesis of Gold Nanostructures by NADPH-Dependent Enzyme from the Extract of Sclerotium rolfsii, Colloids Surf., A, 380: 156-161 (2011).

[12] Faghri Zonooz N., Salouti M., Extracellular Biosynthesis of Silver Nanoparticles Using Cell Filtrate of Streptomyces sp. ERI-3, Sci. Iran., 18: 1631-1635 (2011).

[13] Jain N., Bhargava A., Majumdar S., Tarafdar J.C., Panwar J., Extracellular Biosynthesis and Characterization of Silver Nanoparticles Using Aspergillus flavus NJP08: A Mechanism Perspective, Nanoscale, 3: 635-641 (2011).

[14] Ahmad A., Mukherjee P., Senapati S., Mandal D., Khan M.I., Kumar R., Sastry M., Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Fusarium oxysporum, Colloids Surf., B, 28: 313-318 (2003).

[15] Moteshafi H., Mousavi S.M., Shojaosadati S.A., The Possible Mechanisms Involved in Nanoparticles Biosynthesis, J. Ind. Eng. Chem, 18: 2046-2050 (2012).

[16] Mohammadian A., Shojaosadati S.A., Rezaee M.H., Fusarium oxysporum Mediates Photogeneration of Silver Nanoparticles, Sci. Iran., 14: 323-326 (2007).

[18] Balaji D.S., Basavaraja S. ,Deshpande R., Mahesh D.B., Prabhakar B.K., Venkataraman A., Extracellular Biosynthesis of Functionalized Silver Nanoparticles by Strains of Cladosporium cladosporioides Fungus, Colloids Surf., B, 68: 88-92 (2009).

[19] Hamedi S., Shojaosadati S.A., Shokrollahzadeh S., Hashemi-Najafabadi S., Extracellular Biosynthesis of Silver Nanoparticles Using a Novel and
Non-Pathogenic Fungus, Neurospora intermedia: Controlled Synthesis and Antibacterial Activity
, World J. Microbiol. Biotechnol., 30: 693-704 (2014).

[20] Honary S., Barabadi H., Gharaei-Fathabad E., Naghibi F., Green Synthesis of Copper Oxide Nanoparticles Using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii, Dig. J. Nanomater. Bios., 7: 999-1005 (2012).

[21] Shukla M.K., Singh R.P. ,Reddy C.R.K., Jha B., Synthesis and Characterization of Agar-Based Silver Nanoparticles and Nanocomposite Film with Antibacterial Applications, Bioresour. Technol., 107: 295-300 (2012).

[22] Ghaseminezhad S.M., Hamedi S., Shojaosadati S.A., Green Synthesis of Silver Nanoparticles by a Novel Method: Comparative Study of Their Properties, Carbohydr. Polym., 89: 467-472 (2012).

[23] Prathna T.C., Chandrasekaran N., Raichur A.M., Mukherjee A., Biomimetic Synthesis of Silver Nanoparticles by Citrus limon (Lmon) Aqueous Extract and Theoretical Prediction of Particle Size, Colloids Surf., B, 82: 152-159 (2011).

[24] Sanghi R., Verma P., pH Dependant Fungal Proteins in the ‘Green’ Synthesis of Gold Nanoparticles, Adv. Mater. Lett., 1: 193-199 (2010).

[25] Oza G., Pandey S., Shah R., Sharon M., A Mechanistic Approach for Biological Fabrication of Crystalline Gold Nanoparticles Using Marine Algae, Sargassum wightii, Eur. J. Exp. Biol., 2: 505-512 (2012).

[27] Mohammed Fayaz A., Balaji K., Kalaichelvan P.T., Venkatesan R., Fungal Based Synthesis of Silver Nanoparticles-An Effect of Temperature on the Size of Particles, Colloids Surf., B, 74: 123-126 (2009).

[28] Park J., Joo J., Kwon G.S., Jang Y., Hyeon T., Angew, Synthesis of Monodisperse Spherical Nanocrystals, Angew. Chem. Int. Ed., 46: 4630-4660 (2007).

[29] Bhainsa K.C., D'Souza S.F., Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Aspergillus fumigatus, Colloids Surf., B, 47: 160-164 (2006).

[31] Henglein A.,Meisel D., Radiolytic Control of the Size of Colloidal Gold Nanoparticles, Langmuir, 14: 7392-7396 (1998).

[32] Akhavan A., Kalhor H.R., Kassaee M.Z., Sheikh N., Hassanlou M., Radiation Synthesis and Characterization of Protein Stabilized Gold Nanoparticles, Chem. Eng. J., 159: 230-235 (2010).