Nanocellulose Preparation from Sugarcane Bagasse and Its Application for Paper Sizing

Document Type : Research Article

Authors

Hanoi University of Science and Technology, 1. Dai Co Viet, Hai Ba Trung, Hanoi, VIETNAM

Abstract

The goal of this study was to fully utilize sugarcane bagasse, an abundant residue from the Vietnamese sugar industry that is also known as a potential source of lignocellulosic. The biomass material was used as a raw material to produce cellulose pulp followed by a hydrogen peroxide bleaching process. On the one hand, the unbleached cellulose pulp was used to make paper sheets with basis weights of around 100 g/m2. The bleached cellulose, on the other hand, was chemically and mechanically transformed into nano cellulose via a limited hydrolysis procedure. The obtained nano cellulose possessed a high crystallinity of 80.11% and was used for paper sizing to improve the mechanical and barrier properties of the paper. The ability of sugarcane bagasse nano cellulose-coated paper sheets to produce biodegradable containers for food and beverage applications was investigated.

Keywords

Main Subjects


[1] Schiffer H-W., "World Energy Resources 2016". (2016).
[3] Royer S.J., Ferrón S., Wilson S.T., Karl D.M., Production of Methane and Ethylene from Plastic in the Environment, PLoS One, 13(8) (2018).
[4] Plastic Oceans., Plastic Pollution Facts | PlasticOceans.org/the-Facts, Available from: https://plasticoceans.org/the-facts/.
[5] Brunerová A., Roubík H., Brožek M., Van Dung D., Phung L.D., Hasanudin U., Agustina Iryani D.,  Herák D., Briquetting of sugarcane Bagasse as a Proper Waste Management Technology in Vietnam, Waste Manag. Res., 38(11): 1239–1250 (2020).
[6] Teixeira S.R., Souza AE de., Peña A.F.V., Lima R.G. de., Miguel ÁG., Use of Charcoal and Partially Pirolysed Biomaterial in Fly Ash to Produce Briquettes: Sugarcane Bagasse, Intech., 177–200 (2016).
[7] Sofla M.R.K., Brown R.J., Tsuzuki T., Rainey T.J., A Comparison of Cellulose Nanocrystals and Cellulose Nanofibres Extracted from Bagasse Using Acid and Ball Milling Methods, Adv. Nat. Sci. Nanosci. Nanotechnol., 7(3): 1–9 (2016).
[8] Goldemberg J., Coelho S.T., Nastaric P.M., Lucon O., Ethanol Learning Curve — the Brazilian Experience, 26: 301–304 (2004).
[9] Pereira A.A., Martins G.F., Antunes P.A., Conrrado R., Pasquini D., Job AE., Curvelo A.A.S., Ferreira M., Riul A., Constantion C.J.L., Lignin from Sugar Cane Bagasse: Extraction, Fabrication of Nanostructured Films, and Application, Langmuir, 23(12): 6652–6659 (2007).
[10] Abitbol T., Rivkin A., Cao Y., Nevo Y., Abraham E., Ben-Shalom T. et al., Nanocellulose, a Tiny Fiber with Huge Applications, Curr. Opin. Biotechnol., 39(I):76–88 (2016).
[11] Lin N., Dufresne A., Nanocellulose in Biomedicine: Current Status and Future Prospect, Eur. Polym. J., 59:302–325 (2014).
[12] Abdul Khalil HPS., Davoudpour Y., Saurabh CK., Hossain MS., Adnan AS., Dungani R. et al., A Review on Nanocellulosic Fibres as New Material for Sustainable Packaging: Process and Applications, Renew. Sustain. Energy Rev., 64:823–836 (2016).
[13] Lourenço A.F., Gamelas J.A.F., Sarmento P., Ferreira P.J.T., A Comprehensive Study on Nanocelluloses in Papermaking: The Influence of Common Additives on Filler Retention and Paper Strength, Cellulose, 27(9): 5297–5309 (2020).
[14] Sharma M., Aguado R., Murtinho D., Valente AJM., Mendes De Sousa AP., Ferreira PJT., A Review on Cationic Starch and Nanocellulose as Paper Coating Components, Int. J. Biol. Macromol., 162:578–598 (2020).
[15] Salas C., Hubbe M., Rojas OJ., Nanocellulose Applications in Papermaking. (2019).
[16] Liu J., Chinga-Carrasco G., Cheng F., Xu W., Willför S., Syverud K., Xu Ch., Hemicellulose-Reinforced Nanocellulose Hydrogels for Wound Healing Application, Cellulose, 23(5): 3129–3143 (2016).
[17] Bagherniya M., Babaeipour V., Soleimani A., Optimization of Bacterial Nano-Cellulose Production in Bench-Scale Rotating Biological Contact Bioreactor by Response Surface Methodology, Iran. J. Chem. Chem. Eng.(IJCCE), 40(2): 407–416 (2021).
[18] Voisin H., Bergström L., Liu P., Mathew A., Nanocellulose-Based Materials for Water Purification, Nanomaterials, 7(3): 57 (2017).
[20] Heidari H., Aliramezani F., Ni /Fe3O4@nanocellulose and Ni/Nanocellulose Green Nanocomposites: Inorganic- Organic Hybrid Catalysts for the Reduction of Organic Pollutants, Iran. J. Chem. Chem. Eng. (IJCCE), 41(10): 3293-3303 (2021).
[21] Tyagi P., Hubbe MA., Lucia L., Pal L., High Performance Nanocellulose-Based Composite Coatings for Oil and Grease Resistance, Cellulose, 25(6): 3377–3391 (2018).
[22] Sethi J., Farooq M., Sain S., Sain M., Sirviö JA., Illikainen M. et al., Water Resistant Nanopapers Prepared by Lactic Acid Modified Cellulose Nanofibers, Cellulose, 25(1): 259–268 (2018).
[24] Rahbar Shamskar K., Heidari H., Rashidi A., Study on Nanocellulose Properties Processed Using Different Methods and their Aerogels, J. Polym. Environ., 27(7):1418–1428 (2019).
[25] Li J., Wei X., Wang Q., Chen J., Chang G., Kong L. et al., Homogeneous Isolation of Nanocellulose from Sugarcane Bagasse by High Pressure Homogenization, Carbohydr. Polym., 90(4): 1609–1613 (2012).
[26] Teixeira E de M., Bondancia T.J., Teodoro K.B.R., Corrêa A.C., Marconcini J.M., Mattoso L.H.C., Sugarcane Bagasse Whiskers: Extraction and Characterizations, Ind. Crops Prod., 33(1): 63–66 (2011).
[27] Gond RK., Gupta MK., Jawaid M., Extraction of Nanocellulose from Sugarcane Bagasse and its Characterization for Potential Applications, Polym. Compos., 42(10): 5400–5412 (2021).
[28] Mandal A., Chakrabarty D., Isolation of Nanocellulose from Waste Sugarcane Bagasse (SCB) and its Characterization, Carbohydr. Polym., 86(3): 1291–1299 (2011).
[29] Kumar A., Singh Negi Y., Choudhary V., Kant Bhardwaj N., Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis from Sugarcane Bagasse as Agro-Waste, J. Mater. Phys. Chem., 2(1): 1–8 (2020).
[30] Pereira B., Arantes V., Nanocelluloses from Sugarcane Biomass, In: "Advances in Sugarcane Biorefinery: Technologies, Commercialization, Policy Issues and Paradigm Shift for Bioethanol and By-Products", pp. 179–196 (2018).
[31] De Aguiar J., Bondancia TJ., Claro PIC., Mattoso LHC., Farinas CS., Marconcini JM., Enzymatic Deconstruction of Sugarcane Bagasse and Straw to Obtain Cellulose Nanomaterials, ACS Sustain. Chem. Eng., 8(5): 2287–2299 (2020).
[32] Dien L.Q., Cuong T.D., Minh Phuong N.T., Hoang P.H., Truyen D.N., Minh Nguyet N.T., Nanocellulose Fabrication from Oryza sativa L. Rice Straw Using Combined Treatment by Hydrogen Peroxide and Dilute Sulfuric Acid Solution, Energy Sources, Part A Recover. Util. Environ. Eff., 00(00):1–10 (2019).
[33] Ghavidel A., Gelbrich J., Kuqo A., Vasilache V., Sandu I., Investigation of Archaeological European White Elm (Ulmus Laevis) for Identifying and Characterizing the Kind of Biological Degradation, Heritage, 3(4):1083–1093 (2020).
[34] Hajiha H., Sain M., "The Use of Sugarcane Bagasse Fibres as Reinforcements In Composites", In: "Biofiber Reinforcements in Composite Materials". Elsevier, pp. 525–549 (2015).
[35] Espinosa E., Sánchez R., Otero R., Domínguez-Robles J., Rodríguez A., A Comparative Study of the Suitability of Different Cereal Straws for Lignocellulose Nanofibers Isolation, Int. J. Biol. Macromol., 103:990–999 (2017).
[36] Sánchez-Gutiérrez M., Espinosa E., Bascón-Villegas I., Pérez-Rodríguez F., Carrasco E., Rodríguez A., Production of cellulose Nanofibers from Olive Tree Harvest - A Residue with Wide Applications, Agronomy, 10(5) (2020).
[37] Wulandari W.T., Rochliadi A., Arcana I.M., Nanocellulose Prepared by Acid Hydrolysis of Isolated Cellulose from Sugarcane Bagasse, IOP Conf. Ser. Mater. Sci. Eng., 107(1) (2016).
[38] Chen G., Wang X., Jiang Y., Mu X., Liu H., Insights into the Inhibition of Acidic Hydrolysis of Cellulose by Its Solation, ACS Sustain. Chem. Eng., 6(8): 10999–11007 (2018).
[39] Wang J., Xu J., Zhu S., Wu Q., Li J., Gao Y. et al., Preparation of Nanocellulose in High Yield via Chemi-Mechanical Synergy, Carbohydr. Polym., 251(July 2020):117094 (2021).
[40] French A.D., Idealized Powder Diffraction Patterns for Cellulose Polymorphs, Cellulose, 21(2): 885–896 (2014).
[42] Miao J., Yu Y., Jiang Z., Zhang L., One-Pot Preparation of Hydrophobic Cellulose Nanocrystals in an Ionic Liquid, Cellulose, 23(2):1209–1219 (2016).
[43] Hassanpour A., Asghari S., Lakouraj MM., Synthesis, Characterization and Antibacterial Evaluation of Nanofibrillated Cellulose Grafted by a Novel Quinolinium Silane Salt, RSC Adv., 7(39): 23907–23916 (2017).
[44] Tang L-G., Hon DN-S., Pan S-H., Zhu Y-Q., Wang Z., Wang Z-Z., Evaluation of Microcrystalline Cellulose. I. Changes In Ultrastructural Characteristics During Preliminary Acid Hydrolysis, J. Appl. Polym. Sci., 59(3): 483–488 (1996).
[45] Saïd Azizi Samir MA., Alloin F., Paillet M., Dufresne A., Tangling Effect in Fibrillated Cellulose Reinforced Nanocomposites, Macromolecules, 37(11): 4313–4316 (2004).
[46] Lu Q., Cai Z., Lin F., Tang L., Wang S., Huang B., Extraction of Cellulose Nanocrystals with a High Yield of 88% by Simultaneous Mechanochemical Activation and Phosphotungstic Acid Hydrolysis, ACS Sustain. Chem. Eng., 4(4): 2165–2172 (2016).