Kinetic and Thermodynamic Study of Methyl Orange Dye Adsorption on Zinc Carbonyldiphthalate, an Organometallic-Based Material Prepared with a Montmorillonite Clay

Document Type : Research Article

Authors

1 Department of Chemistry, Faculty of Exact and Computer Sciences, University of Hassiba Benbouali, B.P 78C, Ouled Fares, Chlef, ALGERIA

2 Ecole Supérieure en Informatique 08 mai 1945, BP 73, El Wiam City, Sidi Bel Abbes, ALGERIA

Abstract

Our work is related to the use of adsorption as an effective physical method for water treatment contaminated with toxic dyes generated by various industries. We focused on the adsorption/removal of Methyl Orange (MO) dye from an aqueous solution using a new hybrid organometallic-based material constructed via In-Situ polymerization of Zinc-building units connected by coordination bonds to 4,4'-Carbonyldiphthalic acid (H4CDPA) as a flexible multidentate organic ligand under solvothermal conditions with an amount of Maghnite-H+, an acid-exchanged montmorillonite clay to obtain Zn-CDP/Mag-H+ extremely stable thermally with an onset temperature of degradation upper to 460°C as shown by ThermoGravimetric Analysis (TGA). The structure of this material is confirmed by Fourier Transform InfraRed (FT-IR) spectroscopy and X-Ray Diffraction (XRD). The effect of different parameters such as adsorbent mass, initial dye concentration, contact time, and pH of solution on the adsorption capacity of this material is investigated using UV-Visible spectroscopy. The kinetic study shows that the adsorption process of MO is very fast and well described by the pseudo-second-order model. The adsorption isotherms of the adsorbent/adsorbate systems are in agreement with the Langmuir equation showing an adsorption capacity of 147.05 mg/g for this material. The thermodynamic parameters calculated at various temperatures indicate that MO adsorption on Zn-CDP/Mag-H+ is an endothermic reaction (∆H° > 0) and spontaneous (∆G° < 0) process.

Keywords

Main Subjects


[1] Wong J.K.H., Tan H.K, Lau S.Y., Yap P.S., Danquah M.K., Potential and Challenges of Enzyme Incorporated Nanotechnology in Dye Wastewater Treatment: A Review, J. Environ. Chem. Eng., 7(4): 103261- 103278 (2019). 
[2] Benkhaya S., M’rabet S., El Harfi A., A Review on Classifications, Recent Synthesis and Applications of Textile Dyes, Inorg. Chem. Commun. 115: 107891- 107926 (2020).
[3] Hsieh H.Y., Huang K.C., Cheng J.O., Lo W.T., Meng P.J., Ko F.C., Environmental Effects on the Bioaccumulation of PAHs in Marine Zooplankton in Gaoping Coastal Waters, Taiwan: Concentration, Distribution, Profile, And Sources, Mar. Pollut. Bull., 144: 68-78 (2019).
[4] Lellis B., Fávaro-Polonio C.Z., Pamphile J.A., Polonio J.C., Effects of Textile Dyes on Health and the Environment and Bioremediation Potential of Living Organisms, Biotechnol. Res. Innov., 3(2): 275-290 (2019).
[5] Ren X., Zeng G., Tang L., Wang J., Wan J., Liu Y., Yu J., Yi H., Ye S., Deng R., Sorption, Transport and Biodegradation – An Insight Into Bioavailability of Persistent Organic Pollutants in Soil, Sci. Total Environ., 610: 1154-1163 (2018).
[6] Jun B.M., Hwang H.S., Heo J., Han J., Jang M., Sohn J., Park C.M., Yoon Y., Removal of Selected Endocrine-Disrupting Compounds Using Al-Based Metal Organic Framework: Performance and Mechanism of Competitive Adsorption, J. Ind. Eng. Chem., 79: 345-352 (2019).
[8] Collivignarelli M.C, Abbà A., Carnevale Miino M., Damiani S., Treatments for Color Removal from Wastewater: State of the Art, J. Environ. Manag., 236: 727-745 (2019).
[9] Melo R.P.F., Carmo S.K.S., Barros E.L.B., Câmara A.G., Nunes S.K.S., Barros Neto E.L., Removal of Disperse Blue 56 from Synthetic Textile Effluent Using Ionic Flocculation, Water Sci Technol, 83(11): 2714-2723 (2021).
[10] Jargalsaikhan M., Lee J., Jang A., Jeong S., Efficient Removal of Azo Dye from Wastewater Using the Non-Toxic Potassium Ferrate Oxidation–Coagulation Process, Appl. Sci., 11(15): 6825- 6836 (2021).
[11] Pavithra K.G, Kumar P.S., Jaikumar V., Rajan P.S., Removal of Colorants from Wastewater: A Review on Sources and Treatment Strategies, J. Ind. Eng. Chem., 75: 1-19 (2019).
[13] Pronk W., Ding A., Morgenroth E., Derlon N., Desmond P., Gravity-Driven Membrane Filtration for Water and Wastewater Treatment: A Review, Water Res., 149: 553-565 (2019).
[14] Bukman L., De Souza V.R., Fernandes N.R.C., Caetano W., Batistela V.R., Hioka N., Reverse Micellar Extraction of Dyes Based on Fatty Acids and Recoverable Organic Solvents, Sep. Purif. Technol., 242: 116772- 116780 (2020).
[15] Dassanayake R.S, Acharya S., Abidi N., Recent Advances in Biopolymer-Based Dye Removal Technologies, Molecules, 26(15): 4697- 4717 (2021).
[16] Zeneli A., Kastanaki E., Simantiraki F., Gidarakos E., Monitoring the Biodegradation of TPH and PAHs in Refinery Solid Waste by Biostimulation and Bioaugmentation, J. Environ. Chem. Eng., 7(3): 103054- 103061 (2019).
[17] Gaur N., Narasimhulu K., PydiSetty Y., Recent Advances in the Bio-Remediation of Persistent Organic Pollutants and its Effect on Environment, J. Clean. Prod., 198: 1602-1631 (2018).
[18] Dutta S., Srivastava S.K., Gupta B., Gupta A.K., Hollow Polyaniline Microsphere/MnO2/Fe3O4 Nanocomposites in Adsorptive Removal of Toxic Dyes from Contaminated Water, Mater. Adv., 13(45): 54324–54338 (2021).   
[19] Szczęśniak B., Phuriragpitikhon J., Choma J., Jaroniec M., Recent Advances in the Development and Applications of Biomass-Derived Carbons with Uniform Porosity, J. Mater. Chem. A, 8(36): 18464-18491 (2020).
[20] Ghaderi A., Abbasi S., Farahbod F., Synthesis, Characterization and Photocatalytic Performance of Modified ZnO Nanoparticles with SnO2 Nanoparticles, Mater. Res. Express., 5(6): 065908-065919 (2018).
[21] Abbasi S., Ekrami-Kakhki M.-S., Tahari M., Modeling and Predicting the Photodecomposition of Methylene Blue via ZnO–SnO2 Hybrids Using Design of Experiments (DOE), J. Mater. Sci.: Mater. Electron., 28(3): 15306–15312 (2017).  
[22] Roozban N., Abbasi S., Ghazizadeh M., Statistical Analysis of the Photocatalytic Activity of Decorated Multi-Walled Carbon Nanotubes with ZnO Nanoparticles, J. Mater. Sci.: Mater. Electron., 28(8): 6047–6055 (2017).
[23] Abbasi S., Hasanpour M., Ahmadpoorb F., Sillanpää M., Dastan D., Achour A., Application of the Statistical Analysis Methodology for Photodegradation of Methyl Orange Using a New Nanocomposite Containing Modified TiO2 Semiconductor with SnO2, Int. J. Environ. Anal. Chem., 101(2): 208-224 (2021).
[25] Khan M.S., Khalid M., Ahmad M.S., Shahid M., Ahmad M., Catalytic Activity of Mn(III) and Co(III) Complexes: Evaluation of Catechol Oxidase Enzymatic and Photodegradation Properties, Res. Chem. Intermed., 46: 2985-3006 (2020).
[26] Xiang W., Zhang Y., Chen Y., Liu C.J, Tu X., Synthesis, Characterization and Application of Defective Metal–Organic Frameworks: Current Status and Perspectives, J. Mater. Chem. A, 8: 21526- 21546 (2020).
[27] Begum S., Hassan Z., Bräse S., Tsotsalas M., Polymerization in MOF-Confined Nanospaces: Tailored Architectures, Functions, and Applications, Langmuir, 36(36): 10657- 10673 (2020).
[28] Zhou H.-C., Kitagawa S., Metal–Organic, Chem. Soc. Rev., 43: 5415-5418 (2014).
[29] Liu L.L., Chen J., Zhang Y., Yu C.X., Du W., Sun X.Q., Lou Zhang J., Hu F.L., Mi Y., Ma L.F., Fabrication of Ultrathin Single-Layer 2D Metal-Organic Framework Nanosheets with Excellent Adsorption Performance via a Facile Exfoliation Approach,
J. Mater. Chem. A
, 9: 546–555 (2021).
[30] Jiang D., Chen M., Wang H., Zeng G., Huang D., Cheng M., Liu Y., Xue W., Wang Z.W., The Application of Different Typological and Structural MOFs-Based Materials for the Dyes Adsorption, Coord. Chem. Rev., 380: 471-483 (2019).
[33] Tong M., Liu D., Yang Q., Devautourvinot S., Maurin G., Zhong C., Influence of Framework Metal Ions on the Dye Capture Behavior of MIL-100 (Fe, Cr) MOF Type Solids, J. Mater. Chem. A, 1(30): 8534–8537 (2013).
[34] Haque E., Lee J.E., Jang I.T., Hwang Y.K., Chang J.S., Jegal J., Jhung S.H., Adsorptive Removal of Methyl Orange from Aqueous Solution with Metal-Organic Frameworks, Porous Chromium-Benzenedicarboxylates, J. Hazard. Mater., 181(1-3): 535-542 (2010).
[35] Haque E., Lo V., Minett A., Harris A. Church T., Dichotomous Adsorption Behaviour of Dyes on an Amino-Functionalised Metal–Organic Framework, Amino-MIL-101(Al), J. Mater. Chem. A, 2: 193-203 (2014).
[36] Molavi H., Hakimian A., Shojaei A., Raeiszadeh M., Selective Dye Adsorption by Highly Water Stable Metal-Organic Framework: Long Term Stability Analysis in Aqueous Media, Appl. Surf. Sci., 445: 424-436 (2018).
[37] Carson C.G., Hardcastle K., Schwartz J., Liu X., Hoffmann C., Gerhardt R.A., Tannenbaum R., Synthesis and Structure Characterization of Copper Terephthalate Metal–Organic Frameworks, Eur. J. Inorg. Chem., 16: 2338-2343 (2009).
[38] Mohammadi N., Khani H., Gupta V.K., Amereh E., Agarwal S., Adsorption Process of Methyl Orange Dye onto Mesoporous Carbon Material–Kinetic and Thermodynamic Studies, J. Colloid Interface Sci., 362(2): 457-462 (2011).
[39] Abbasi S., Ekrami-Kakhki M.-S., Tahari M., The Influence of ZnO Nanoparticles Amount on the Optimisation of Photo Degradation of Methyl Orange Using Decorated MWCNTs, Prog. Ind. Ecol., 13(1): 3-15 (2019).
[40] Roozban N., Abbasi S., Ghazizadeh M., The Experimental and Statistical Investigation of the Photo Degradation of Methyl Orange Using Modified MWCNTs with Different Amount of ZnO Nanoparticles, J. Mater. Sci. Mater. Electron., 28(10): 7343–7352 (2017). 
[41] Belbachir M., Bensaoula A., Composition and Method for Catalysis Using Bentonites, U.S. Patent No 6,274,527B1 (2006).
[42] Cherifi B.I., Belbachir M., Bennabi S., Green Polymerization of Vinyl Acetate Using Maghnite-Na+, an Exchanged Montmorillonite Clay, as an Ecologic Catalyst, Chem. Chem. Technol., 15(2): 183-190 (2021).
[43] Haoue S., Derdar H., Belbachir M., Harrane A., A New Green Catalyst for Synthesis of bis-Macromonomers of Polyethylene Glycol (PEG), Chem. Chem. Technol., 14(4): 468 (2020).
[44] Derdar H., Meghabar R., Benachour M., Mitchell G.R., Bachari K., Belbachir M., Cherifi Z., Baghdadli M.C., Harrane A., Polymer-Clay Nanocomposites: Exfoliation and Intercalation of Organophilic Montmorillonite Nanofillers in Styrene–Limonene Copolymer, Polym. Sci. – A, 63: 568-575 (2021).
[48] Chen Z., Zhang J., Fu J., Wang M., Wang X., Han R., Xu Q., Adsorption of Methylene Blue onto Poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) Nanotubes: Kinetics, Isotherm and Thermodynamics Analysis, J. Hazard. Mater., 273: 263-271 (2014).
[49] Williams T.R., Handbook of Analytical Chemistry (Meites, Louis), J. Chem. Educ., 40(10): 560 (1963).
[50] Qiu T., Zeng Y., Ye C., Tian H., Adsorption Thermodynamics and Kinetics of p-Xylene on Activated Carbon, J. Chem. Eng. Data., 57(5): 1551-1556 (2012).
[51] Khan N.A., Hasan Z., Jhung S.H., Adsorptive removal of Hazardous Materials Using Metal-Organic Frameworks (MOFs): A Review, J. Hazard. Mater., 244-245: 444-456 (2013).
[53] Ai L., Zhang C., Meng L., Adsorption of Methyl Orange from Aqueous Solution on Hydrothermal Synthesized Mg-Al Layered Double Hydroxide, J. Chem. Eng. Data, 56(11): 4217-4225 (2011).
[54] Tsai F.-C., Xia Y., Ma N., Shi J.-J., Jiang T., Chiang T.-C., Zhang .Z-C., Tsen W.-C., Adsorptive Removal of Acid Orange 7 from Aqueous Solution with Metal–Organic Framework Material, Iron (III) Trimesate, Desalin. Water Treat., 57(7): 3218-3226 (2014).
[55] Li H., Cao X., Zhang C., Yu Q., Zhao Z., Niu X., Sun X., Liu Y., Ma L., Li Z., Enhanced Adsorptive Removal of Anionic And Cationic Dyes from Single or Mixed Dye Solutions Using MOF PCN-222, RSC Adv., 7: 16273-16281 (2017).
[56] García E.R., Medina R.L., Lozano M.M., Pérez I.H., Valero M.J, Maubert Franco A.M., Adsorption of Azo-Dye Orange II from Aqueous Solutions Using a Metal-Organic Framework Material: Iron- Benzenetricarboxylate, Materials, 7(12): 8037-8057 (2014).
[57] Guo H., Lin F., Chen J., Li F., Weng W., Metal–Organic Framework MIL-125(Ti) for Efficient Adsorptive Removal of Rhodamine B from Aqueous Solution, Appl. Organomet. Chem., 29(1): 12-19 (2015).
[58] Langmuir I., The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinium, J. Am. Chem. Soc., 40(9): 1361-1403 (1918).
[59 Zhang F., Song W., Lan J., Effective Removal of Methyl Blue by Fine-Structured Strontium and Barium Phosphate Nanorods, J. Lan, Appl. Surf. Sci., 326: 195-203 (2015).
[60] Freundlich H.M.F., Over the Adsorption in Solution, J. Phys. Chem., 57: 385-471 (1906).
[62] Hao G., Li W., Wang S., Zhang S., Lu A., Tubular Structured Ordered Mesoporous Carbon as an Efficient Sorbent for the Removal of Dyes from Aqueous Solutions, Carbon, 48(12): 3330-3339 (2010).
[63] Lv S.-W., Liu J.-M., Ma H., Wang Z.-H., Li C.-H., Zhao N., Wang S., Simultaneous Adsorption of Methyl Orange and Methylene Blue from Aqueous Solution Using Amino Functionalized Zr-Based MOFs, Micropor. Mesopor. Mat., 282: 179-187 (2019).
[64] Lamari R., Benotmane B., Mostefa F., Removal of Methyl Orange from Aqueous Solution Using Zeolitic Imidazolate Framework-11: Adsorption Isotherms, Kinetics and Error Analysis, Iran. J. Chem. Chem. Eng. (IJCCE), 41(6): 1985-1999 (2022).
[65] Rytwo G., Ruiz-Hitzky E., Enthalpies of Adsorption of Methylene Blue and Crystal Violet to Montmorillonite, J. Therm. Anal. Calorim., 71: 751-759 (2003).
[66] Song S., Ma Y., Shen H., Zhang M., Zhang Z., Removal and recycling of ppm Levels of Methylene Blue from an Aqueous Solution with Graphene Oxide, RSC Adv., 5(35): 27922- 27932 (2015).
[67] Fernandes A.N., Almeida C.A.P, Debacher N.A., Isotherm and thermodynamic Data of Adsorption of Methylene Blue from Aqueous Solution onto Peat, J. Mol. Struct., 982(1-3): 62-65 (2010).
[68] Zenasni M.A., Benfarhi S., Merlin A., Molina S., George B., Meroufel B., Adsorption of Cu(II) on Maghnite from Aqueous Solution: Effects of pH, Initial Concentration, Interaction Time and Temperature, Nat. Sci., 10: 856-868 (2012).