Gas-Liquid Flow and Coalescence Characteristics of Bubbles in Expansion Microchannel

Document Type : Research Article

Authors

State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. CHINA

Abstract

The flow behavior of bubbles in the expansion of the microchannel is studied. Four stable flow patterns are observed: Double-Layer-Bubble Coalescence (DLBC), Hamburger-Double-Layer-Bubble Coalescence (HDLBC), Hamburger Flow Coalescence (HFC), and Non-Coalescence Hamburger Flow (NCHF). With the increase of gas velocity, the flow pattern changes gradually from DLBC to HDLBC, HFC, and UHFC. The experimental results show that the liquid film drainage time increases with the bubble length. The location of bubble coalescence is away from the inlet with the increase of bubble length and bubble velocity but moves towards the inlet with the increase of liquid slug length. A prediction equation of bubble coalescence position is proposed, which has a good prediction effect.

Keywords

Main Subjects


[1] Whitesides G.M., The Origins and the Future of Microfluidics, Nature, 442: 368-373 (2006).
[2] Pasha M., Li G., Shang M., Liu S., Su Y., Mass Transfer and Kinetic Characteristics for CO2 Absorption in Microstructured Reactors Using an Aqueous Mixed Amine, Sep. Purif. Technol. (SPUTFP), 274: 118987 (2021).
[4] Lv H., Chen X., Zeng X., Optimization of Micromixer with Cantor Fractal Baffle Based on Simulated Annealing Algorithm, Chaos Solitons Fractals (CSFOEH) 148:111048 (2021).
[5] Lv H., Chen X., Wang X., Zeng X., Ma Y., A Novel Study on a Micromixer with Cantor Fractal Obstacle Through Grey Relational Analysis, Int. J. Heat Mass Transf. (IJHMAK) 183:122159 (2021).
[6] Yu Q., Chen X., Insights Into the Breaking and Dynamic Mixing of Microemulsion (W/O) in the T-Junction Microchannel, Chaos Solitons Fractals (CSFOEH) 155:111774 (2022).
[7] Tay A., Pfeiffer D., Rowe K., Tannenbaum A., Popp F., Strangeway R., Schuler D., Di Carlo D., High-Throughput Microfluidic Sorting of Live Magnetotactic Bacteria, Appl. Environ. Microbiol. (AEMIDF), 84: e01308-18 (2018).
[8] Vecchiolla D., Giri V., Biswal S.L., Bubble–Bubble Pinch-Off in Symmetric and Asymmetric Microfluidic Expansion Channels for Ordered Foam Generation, Soft Matter (SMOABF), 14: 9312-9325 (2018).
[9] Huang X., Li Z., Deng, Y., Cai W., Gu L., Lu H., Effect of Micro- and Nanobubbles on the Crystallization of THF Hydrate Based on the Observation by Atomic Force Microscopy, J. Phys. Chem. C (JPCCCK), 124: 13966-13975 (2020).
[10] Dedovets D., Li Q., Leclercq L., Nardello-Rataj V., Leng J., Zhao S., Pera-Titus M., Multiphase Microreactors Based on Liquid–Liquid and Gas–Liquid Dispersions Stabilized by Colloidal Catalytic Particles, Angew. Chem.-Int. Edit. (ACIEF5), 10.1002/anie.202107537 (2021).
[11] Choi C.H., Wang H., Lee H., Kim J.H., Zhang L., Mao A., Mooney D.J., Weitz D.A., One-Step Generation of Cell-Laden Microgels Using Double Emulsion Drops with a Sacrificial Ultra-Thin Oil Shell, Lab Chip (LCAHAM), 16: 1549-1555 (2016).
[12] Lee T.Y., Praveenkumar R., Oh Y.K., Lee K., Kim S.H., Alginate Microgels Created by Selective Coalescence between Core Drops Paired with an Ultrathin Shell, J. Mat. Chem. B (JMCBDV), 4: 3232-3238 (2016).
[13] Shen Y., Hu L., Chen W., Xie H., Fu, X., Drop Encapsulated in Bubble: A New Encapsulation Structure, Phys. Rev. Lett. (PRLTAO), 120: 054503 (2018).
[14] He M., Edgar J.S., Jeffries G.D.M., Lorenz R.M., Shelby J.P., Chiu D.T., Magnetic Targeting and Ultrasound Activation of Liposome-Microbubble Conjugate for Enhanced Delivery of Anticancer Therapies, ACS Appl. Mater. Interfaces (AAMICK), 12: 23737-23751 (2020).
[15] Deng N.N., Sun S.X., Wang W., Ju X.J., Xie R., Chu L.Y., A Novel Surgery-Like Strategy for Droplet Coalescence in Microchannels, Lab Chip (LCAHAM), 13: 3653-3657 (2013).
[16] Chen J.S., Jiang J.H., Droplet Microfluidic Technology: Mirodroplets Formation and Manipulation, Chin. J. Anal. Chem. (FHHHDT),40: 1293-1300 (2012).
[17] Xiao Z., Zhang B., Droplet Microfluidics: Technologies and Applications, Chin. J. Chromatogr. (SEPUER), 29: 949-956 (2011).
[18] Bayareh M., Mortazavi S., Three-Dimensional Numerical Simulation of Drops Suspended in Simple Shear Flow at Finite Reynolds Numbers, Int. J. Multiph. Flow (IJMFBP),s 37: 1315-1330 (2011).
[19] Yang L., Wang K., Tan J., Lu Y., Luo G., Experimental Study of Microbubble Coalescence in a T-junction Microfluidic Device, Microfluid. Nanofluid, Microfluid. Nanofluid. (MNIAAR), 12: 715-722 (2012).
[20] Gunes D.Z., Bercy M., Watzke B., Breton O., Burbidge A.S., A Study of Extensional Flow Induced Coalescence in Microfluidic Geometries with Lateral Channels, Soft Matter (SMOABF), 9: 7526-7537 (2013).
[21] Wu Y., Fu T., Zhu C., Ma Y., Li H.Z., Bubble Coalescence at a Microfluidic T-Junction Convergence: from Colliding to Squeezing, Microfluid. Nanofluid. (MNIAAR), 16: 275-286 (2014).
[22] Tan Y.C., Fisher J.S., Lee A.I., Cristini V., Lee A.P., Design of Microfluidic Channel Geometries For The Control of Droplet Volume, Chemical Concentration, and Sorting, Lab. Chip. (LCAHAM), 4: 292-298 (2004).
[23] Fu T., Ma Y., Li H.Z., Bubble Coalescence In Non-Newtonian Fluids in a Microfluidic Expansion Device, Chem. Eng. Process. (CENPEU), 97: 38-44 (2015).
[24] Liu Z., Wang X., Cao R., Pang Y., Droplet Coalescence at Microchannel Intersection Chambers with Different Shapes, Soft Matter (SMOABF), 12: 5797-5807 (2016).
[25] Anthony C.R., Harris M.T., Basaran O.A., Initial Regime of Drop Coalescence, Phys. Rev. Fluids (PLEEE8), 5: 033608 (2020).
[27] Liao Y.X.; Lucas D., A Literature Review of Theoretical Models for Drop and Bubble Breakup in Turbulent Dispersions, Chem. Eng. Sci. (CESHAR) 64: 3389–3406 (2009).
[28] Garstecki P., Fuerstman M.J., Stone H.A., Whitesides G.M., Formation of Droplets and Bubbles in a Microfluidic T-Junction-Scaling and Mechanism of Break-Up, Lab Chip (LCAHAM), 6: 437-446 (2006).
[30] Tsang Y.H., Koh Y.H., Koch D.L., Bubble-Size Dependence of the Critical Electrolyte Concentration for Inhibition of Coalescence, J. Colloid Interface Sci. (JCISA5), 275: 290-297 (2004).