Energy and Exergy Analysis of Internal Combustion Engine Performance of Spark Ignition for Gasoline, Methane, and Hydrogen Fuels

Document Type : Review Article

Authors

1 Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, I.R. IRAN

2 Department of Agriculture, Jouybar Branch, Islamic Azad University, Jouybar, I.R. IRAN

3 Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, I.R. IRAN

4 Department of Chemistry, Shams Gonbad Higher Education Institute, Gonbad Kavous, I.R. IRAN

5 Department of Chemistry, Payame Noor University, I.R. IRAN

Abstract

Exergy analysis is a tool to determine the share of processes involved in transferring input functionality to the system and where the useful energy loss occurs in a system or process. In this study, an exergy comparison of the performance of an internal combustion engine with spark-ignition for gasoline, hydrogen, and methane fuels is considered. For this purpose, first, multi-zone modeling of the engine based on flame advancement has been introduced. Then, the necessary conceptual bases for performing exergy analysis of the system have been established by defining the term exergy and creating the corresponding exergy balance equations and applying them to closed systems and control volumes. This study shows that the largest share of irreversibility in the engine is related to the combustion process. Also, for stoichiometric conditions, we can mention the percentage of exergy transferred by working approximately equal for all three fuels, the highest percentage of irreversibility for gasoline, and the lowest percentage of irreversibility for hydrogen. Examining the exergy analysis results in the assumed operating conditions mentioned in the paper shows that increasing engine speed increases exergy transfer with work and decreases exergy transfer with heat. Also, increasing the equivalence ratio increases the share of exergy of the mixture inside the cylinder and decreases the irreversible share of inlet exergy.

Keywords

Main Subjects


[1] Ma B., Yao A., Yao C., Wu T., Wang B., Gao J., Chen C., Exergy Loss Analysis on Diesel Methanol Dual Fuel Engine under Different Operating Parameters, Applied Energy, 261: 114483 (2020).
[2] Faizal M., Saidur R., Comparative Thermodynamic Analysis of Gasoline and Hydrogen Fuelled Internal Combustion Engines, International Journal of Advanced Scientific Research and Management, 2(3): 12-18 (2017).
[3] Verma S., Das L.M., Bhatti S.S., Kaushik S.C., A Comparative Exergetic Performance and Emission Analysis of Pilot Diesel Dual-Fuel Engine with Biogas, CNG and Hydrogen as Main Fuels, Energy Conversion and Management, 151: 764-777 (2017).
[4] Feng H., Wang X., Zhang J., Study on the Effects of Intake Conditions on the Exergy Destruction of Low Temperature Combustion Engine for a Toluene Reference Fuel, Energy Conversion and Management, 188: 241-249 (2019).
[5] Bejan A., “Advanced Engineering Thermodynamics”, John Wiley & Sons Inc. (2016).
[7] Nieminen J., Dincer I., Comparative Exergy Analyses of Gasoline and Hydrogen Fuelled ICEs, International Journal of Hydrogen Energy, 35(10): 5124-5132 (2010).
[8] Mahabadipour H., Srinivasan K.K., Krishnan S.R., An Exergy Analysis Methodology for Internal Combustion Engines Using a Multi-Zone Simulation of Dual Fuel Low Temperature Combustion, Applied Energy, 256: 113952 (2019).
[9] Elfasakhany A., The Effects of Ethanol-Gasoline Blends on Performance and Exhaust Emission Characteristics of Spark Ignition Engines, International Journal of Automotive Engineering, 4: 609-620 (2014).
[10] Doğan B., Erol D., Yaman H., Kodanli E., The Effect of Ethanol-Gasoline Blends on Performance and Exhaust Emissions of a Spark Ignition Engine Through Exergy Analysis, Applied Thermal Engineering, 120: 433-443 (2017).
[11] Dhyani V., Subramanian K.A., Experimental Based Comparative Exergy Analysis of a Multi-Cylinder Spark Ignition Engine Fuelled with Different Gaseous (CNG, HCNG, And Hydrogen) Fuels, International Journal of Hydrogen Energy, 44(36): 20440-20451 (2019).
[12] Sahoo S., Srivastava D.K., Quantitative and Qualitative Analysis of Thermodynamic Process of a Bi‐Fuel Compressed Natural Gas Spark Ignition Engine, Environmental Progress & Sustainable Energy, e13583 (2021).
[13] Liu C., Liu Z., Tian J., Han Y., Xu Y., Yang Z., Comprehensive Investigation of Injection Parameters Effect on a Turbocharged Diesel Engine Based on Detailed Exergy Analysis, Applied Thermal Engineering, 154: 343-357 (2019).
[14] Bhatti S.S., Verma S., Tyagi S.K., Energy and Exergy Based Performance Evaluation of Variable Compression Ratio Spark Ignition Engine Based on Experimental Work, Thermal Science and Engineering Progress, 9: 332-339 (2019).
[15] Rufino C.H., de Lima A.J., Mattos A.P., Allah F.U., Bernal J.L., Ferreira J.V., Gallo W.L., Exergetic Analysis of a Spark-Ignition Engine Fuelled with Ethanol, Energy Conversion and Management, 192: 20-29 (2019).
[17] Shinde B.J., Karunamurthy K., Ismail S., Thermodynamic Analysis of Gasoline-Fueled Electronic Fuel Injection Digital Three-Spark Ignition (EFI-DTSI) Engine, Journal of Thermal Analysis and Calorimetry, 141(6): 2355-2367 (2020).
[18] Odibi C., Babaie M., Zare A., Nabi M.N., Bodisco T.A., Brown R.J., Exergy Analysis of a Diesel Engine with Waste Cooking Biodiesel and Triacetin, Energy Conversion and Management, 198: 111912 (2019).
[19] Menzel G., Och S.H., Mariani V.C., Moura L.M., Domingues E., Multi-Objective Optimization of the Volumetric and Thermal Efficiencies Applied to a Multi-Cylinder Internal Combustion Engine, Energy Conversion and Management, 216: 112930 (2020).
[20] Kian M.K.D., Rostami S., Eslami M., Yusaf T., Sendilvelan S., The Effect of Inlet Temperature and Spark Timing on Thermo-Mechanical, Chemical and the Total Exergy of an SI Engine Using Bioethanol-Gasoline Blends, Energy Conversion and Management, 165: 344-353 (2018).
[22] Hoseinzadeh S., Garcia D A., Numerical Analysis of Thermal, Fluid, and Electrical Performance of a Photovoltaic Thermal Collector at New Micro-Channels Geometry, Journal of Energy Resources Technology, 144(6): 062105 (2021).
[23] Mahmoudan A., Samadof P., Hosseinzadeh S., Garcia D.A., A Multigeneration Cascade System Using Ground-source Energy with Cold Recovery: 3E Analyses and Multi-objective Optimization, Energy, 121185 (2021).
[24] Hoseinzadeh S., Stephan Heyns P., Advanced Energy, Exergy, and Environmental (3E) Analyses and Optimization of a Coal-Fired 400 MW Thermal Power Plant, Journal of Energy Resources Technology, 143(8): 082106 (2021).
[25] Naderi A., Qasemian A., Shojaeefard M.H., Samiezadeh S., Younesi M., Sohani A., Hoseinzadeh S., A Smart Load-Speed Sensitive Cooling Map to Have a High-Performance Thermal Management System in an Internal Combustion Engine, Energy, 229: 120667 (2021).
[26] Pourkhesalian A.M., Shamekhi A.H., Salimi F., Alternative Fuel and Gasoline in an SI Engine: A Comparative Study of Performance and Emissions Characteristics, Fuel, 89(5): 1056-1063 (2010).
[27] Rani V.A., Prabhakaran D., Thirumarimurugan M., Modelling and Control of pH in a Continuous Stirred Tank Reactor (CSTR), J. Environ. Prot. Ecol., 21(2):  413-422 (2020).
[28] Ma X., Kexin Z., Yonggang W., Ebadi A.G., Toughani M., Investigation of Low-Temperature Lipase Production and Enzymatic Properties of Aspergillus Niger, Iran. J. Chem. Chem. Eng. (IJCCE), 40(4): 1364-1374 (2021).
[29] Liu W., Zhang H., Gong J., Liu J., Advanced Treatment of Dyed Wastewater from Papermaking with Wastepaper Based on the Fenton Method, J. Environ. Prot. Ecol., 21(2): 433-442 (2020).
[30] Soleimani-Amiri S., Asadbeigi N., Badragheh S., A Theoretical Approach to New Triplet and Quintet (nitrenoethynyl) alkylmethylenes,(nitrenoethynyl) alkylsilylenes,(nitrenoethynyl) alkylgermylenes, Iran. J. Chem. Chem. Eng. (IJCCE)., 39(4): 39-52 (2020).‏
[31] Soceanu A., Dobrinas S., Popovici I.C., Jitariu D., Health Risk Assessment of Heavy Metals in Seafood. J. Environ. Prot. Ecol., 21(2): 490-497 (2020).
[32] Ahmadi S., Hosseinian A., Delir Kheirollahi Nezhad P., Monfared A., Vessally E., Nano-Ceria (CeO2):
An Efficient Catalyst for the Multi-Component Synthesis of a Variety of Key Medicinal Heterocyclic Compounds
, Iran. J. Chem. Chem. Eng. (IJCCE)., 38(6): 1-19 (2019).
[33] Burlacu I.F., Favier L., Matei E., Predescu C., Deák G., Photocatalytic Degradation of a Refractory Water Pollutant Using Nanosized Catalysts. J. Environ. Prot. Ecol., 21(2): 571-578 (2020).
[34] Vessally, E., Mohammadi, S., Abdoli, M., Hosseinian, A., Ojaghloo, P., Convenient and Robust Metal-Free Synthesis of Benzazole-2-Ones Through the Reaction of Aniline Derivatives and Sodium Cyanate in Aqueous Medium, Iran. J. Chem. Chem. Eng. (IJCCE)., 39(5): 11-19 (2020).‏
[35] Su D., Jing W., Intelligent Pid Driving and Control in the Centrifugal Microfluidic Chip Environment, J. Environ. Prot. Ecol., 21(2): 644-653 (2020).
[36] Paduretu C.C., Apetroaei M.R., Apetroaei G.M., Atodiresei D., Rau I., Dyes Adsorption by Using Different Types of Chitosan for Decontamination of Cleaning Waters from Chemical Carriers, J. Environ. Prot. Ecol., 21(1): 28-36 (2020).
[37] Jalali Sarvestani M.R., Charehjou P., Fullerene (C20) as a Potential Adsorbent and Sensor for the Removal and Detection of Picric Acid Contaminant: DFT Studies, Central Asian Journal of Environmental Science and Technology Innovation, 2(1): 12-19 (2021).
[39] Gharibzadeh F., Vessally E., Edjlali L., Es' haghi M., Mohammadi R., A DFT Study on Sumanene, Corannulene and Nanosheet as the Anodes in Li−Ion Batteries, Iran. J. Chem. Chem. Eng. (IJCCE), 39: 51-62 (2020).
[40] Cani X.H., Malollari I., Nuro A., Buzo R., Classification of Hydrocarbons Content in Used Tyres Pyrolytic Oil, by Gas Chromatography Method, J. Environ. Prot. Ecol., 21(1): 300-307 (2020).
[41] Vessally E., Hosseinian A., A Computational Study on the Some Small Graphene-Like Nanostructures as the Anodes in Na−Ion Batteries, Iran. J. Chem. Chem. Eng.(IJCCE), 40: 691-703 (2021). 
[42] Hornet M., Cirstolovean I.L., Nastac D.C., Todor R., Natural Ventilation for Amphitheatres-A Way of Increasing Indoor Air Quality by Decreasing Energy Consumption, J. Environ. Prot. Ecol., 21(1): 10-18 (2020).
[43] Vessally E., Farajzadeh P., Najafi E., Possible Sensing Ability of Boron Nitride Nanosheet and its Al– and Si–Doped Derivatives for Methimazole drug by Computational Study, Iran. J. Chem. Chem. Eng. (IJCCE), 40(4):1001-1011(2021).
[44] Ivanova L.P., Vassileva P.S., Gencheva G.G., Detcheva, A.K., Feasibility of Two Bulgarian Medicinal Plant Materials for Removal of Cu2+ Ions from Aqueous Solutions, J. Environ. Prot. Ecol., 21(1): 37-45 (2020).
[45] Hashemzadeh B., Edjlali L., Delir Kheirollahi Nezhad P., Vessally E., A DFT Studies on a Potential Anode Compound for Li-Ion Batteries: Hexa-Cata-Hexabenzocoronene Nanographen, Chem. Rev. Lett., (2021).
[46] Salehi N., Vessally E., Edjlali L., Alkorta I., Eshaghi M., Nan@Tetracyanoethylene (n=1-4) Systems: Sodium salt vs Sodium Electrode, Chem. Rev. Lett., 3: 207-217 (2020).
[47] Sreerama L., Vessally E., Behmagham F., Oxidative Lactamization of Amino Alcohols: An Overview, J. Chem. Lett., 1: 9-18 (2020).
[48] Majedi S., Sreerama L., Vessally E., Behmagham F., Metal-Free Regioselective Thiocyanation of (Hetero) Aromatic C-H Bonds using Ammonium Thiocyanate: An Overview, J. Chem. Lett., 1: 25-31 (2020).
[50] Shajari N., Yahyaei H., Ramazani A., Experimental and Computational Investigations of Some New Cabamothioate Compounds, Chem. Rev. Lett., 4: 21-29 (2021).
[51] Majedi S., Majedi S., Existing Drugs as Treatment Options for COVID-19: A Brief Survey of Some Recent Results, J. Chem. Lett., 1: 2-8 (2020).
[52] Jalali Sarvestani M. R., Majedi S., A DFT Study on the Interaction of Alprazolam with Fullerene (C20), J. Chem. Lett., 1: 32-38 (2020).
[54] Majedi S., Behmagham F., Vakili M., Theoretical View on Interaction between Boron Nitride Nanostructures and Some Drugs, J. Chem. Lett., 1: 19-24 (2020)
[55]  Zha TH., Castillo O., Jahanshahi H., Yusuf A., Alassafi MO., Alsaadi FE., Chu YM., A Fuzzy-Based Strategy to Suppress the Novel Coronavirus (2019-NCOV) Massive Outbreak, Applied and Computational Mathematics, 20: 160-176 (2020).
[56] Zhao T., Wang M., Chu Y., On the Bounds of the Perimeter of an Ellipse, Acta Mathematica Scientia, 42(2): 491-501 (2022).
[57] Zhao T.H., Wang M.K., Hai G.J., Chu Y.M., Landen inequalities for Gaussian hypergeometric function. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Serie A. Matemáticas, 116(1): 1-23 (2022).
[57] Nazeer M., Hussain F., Khan MI., El-Zahar E.R., Chu Y.M., Malik M.Y., Theoretical Study of MHD Electro-Osmotically Flow of Third-Grade Fluid in Micro Channel, Applied Mathematics and Computation, 420: 126868 (2022).
[58] Chu Y.M., Shankaralingappa B.M., Gireesha B.J., Alzahrani F., Khan M.I., Khan S.U., Combined Impact of Cattaneo-Christov Double Diffusion and Radiative Heat Flux on Bio-Convective Flow of Maxwell Liquid Configured by a Stretched Nano-Material Surface, Applied Mathematics and Computation, 419: 126883 (2022).
[59] Zhao T.H., Khan M.I., Chu Y.M., Artificial Neural Networking (ANN) Analysis for Heat and Entropy Generation in Flow of Non‐Newtonian Fluid Between Two Rotating Disks, Mathematical Methods in the Applied Sciences, (2021).
[61] Zhao T.H., He Z.Y., Chu Y.M., Sharp Bounds for the Weighted Hölder Mean of the Zero-Balanced Generalized Complete Elliptic Integrals, Computational Methods and Function Theory, 21(3): 413-426 (2021).
[62] Zhao T.H., Wang M.K., Chu Y.M., Concavity and Bounds Involving Generalized Elliptic Integral of the First Kind, J. Math. Inequal., 15(2): 701-724 (2021).
[63] Zhao T.H., Wang M.K., Chu Y.M., Monotonicity and Convexity Involving Generalized Elliptic Integral of the First Kind. Revista De La Real Academia De Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 115(2):1-3 (2021).
[64] Chu H.H., Zhao T.H., Chu Y.M., Sharp Bounds for the Toader Mean of order 3 in Terms of Arithmetic, Quadratic and Contraharmonic Means, Mathematica Slovaca, 70(5): 1097-112 (2020).
[65] Zhao T.H., He Z.Y., Chu Y.M., On some Refinements for Inequalities Involving Zero-Balanced Hypergeometric Function, AIMS Math., 5(6): 6479-95 (2020).
[66] Zhao T.H., Wang M.K., Chu Y.M., A Sharp Double Inequality Involving Generalized Complete Elliptic Integral of the First Kind, AIMS Math., 5(5):4512-28 (2020).
[67] Zhao T.H., Shi L., Chu Y.M., Convexity and Concavity of the Modified Bessel Functions of the First Kind with Respect to Hölder Means, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 114(2):1-4 (2020).
[68] Zhao T., Wu Q., Li S., Guo R., Dian S., Jia H., Optimization Design of General Type-2 Fuzzy Logic Controllers for an Uncertain Power-Line Inspection Robot, Journal of Intelligent & Fuzzy Systems, 37(2):2203-2214 (2019).
[69] Zhao T.H., Wang M.K., Zhang W., Chu Y.M., Quadratic Transformation Inequalities for Gaussian Hypergeometric Function, Journal of Inequalities and Applications, 2018(1):1-5 (2018).
[70] Chu Y.M., Zhao T.H., Concavity of the Error Function with Respect to Hölder Means, Math. Inequal. Appl., 19(2):589-595 (2016).
[71] Song Y.Q., Zhao T.H., Chu Y.M., Zhang X.H., Optimal Evaluation of a Toader-Type Mean by Power Mean, Journal of Inequalities and Applications, 2015(1): 1-2 (2015).
[73] Chu Y.M., Zhao T.H., Convexity and Concavity of the Complete Elliptic Integrals with Respect to Lehmer Mean, Journal of Inequalities and Applications, 2015(1):1-6 (2015).
[74] Zhao T.H., Yang Z.H., Chu Y.M., Monotonicity Properties of a Function Involving the Psi Function with Applications, Journal of Inequalities and Applications, 2015(1):1-0 (2015).
[75] Chu Y.M., Wang H., Zhao T.H., Sharp bounds for the Neuman Mean in Terms of the Quadratic and Second Seiffert Means, Journal of Inequalities and Applications, 2014(1):1-4 (2014).
[76] Sun H., Zhao T.H., Chu Y.M., Liu B.Y., A Note on the Neuman-Sándor Mean, J. Math. Inequal., 8(2): 287-297 (2014).
[78] Yuming C.H., Tiehong Z.H., Yingqing S.O., Sharp Bounds for Neuman-Sándor Mean in Terms of the Convex Combination of Quadratic and First Seiffert Means, Acta Mathematica Scientia, 34(3): 797-806 (2014).
[79] Zhao T.H., Chu Y.M., Jiang Y.L., Li Y.M., Best Possible Bounds for Neuman-Sándor Mean by the Identric, Quadratic and Contraharmonic Means, Abstract and Applied Analysis, 2013 (2013).
[81] Wang M.K., Hong M.Y., Xu Y.F., Shen Z.H., Chu Y.M., Inequalities for Generalized Trigonometric and Hyperbolic Functions with one Parameter, J. Math. Inequal., 14(1):1-21 (2020).
[82]  Xu HZ., Qian WM., Chu YM., Sharp Bounds for the Lemniscatic Mean by the One-Parameter Geometric and Quadratic Means, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 116(1): 1-5 (2022).
[83] Karthikeyan K., Karthikeyan P., Baskonus HM, Venkatachalam K., Chu YM., Almost Sectorial Operators on Ψ‐Hilfer Derivative Fractional Impulsive Integro‐Differential Equations, Mathematical Methods in the Applied Sciences, (2021).
[85] Rashid S., Sultana S., Karaca Y., Khalid A., Chu Y.M., Some Further Extensions Considering Discrete Proportional Fractional Operators, Fractals, 30(01): 2240026 (2022).
[86]  Zhao T.H., Qian WM., Chu Y.M., Sharp Power Mean Bounds for the Tangent and Hyperbolic Sine Means, Journal of Mathematical Inequalities, 15(4): 1459-1472 (2021).
[87] Zhao T.H., Qian W.M., Chu Y.M., On Approximating the Arc Lemniscate Functions, Indian Journal of Pure and Applied Mathematics, 14: 1-4 (2021).
[88] Hajiseyedazizi S.N., Samei M.E., Alzabut J., Chu Y.M., On Multi-Step Methods for Singular Fractional Q-Integro-Differential Equations, Open Mathematics, 19(1):1378-1405 (2021).
[89]  He Z.Y., Abbes A., Jahanshahi H., Alotaibi N.D., Wang Y., Fractional-Order Discrete-Time SIR Epidemic Model with Vaccination: Chaos and Complexity, Mathematics, 10(2):165 (2022).
[90] Jin F., Qian ZS., Chu YM., ur Rahman M., On Nonlinear Evolution Model for Drinking Behavior under Caputo-Fabrizio Derivative, Journal of Applied Analysis & Computation, 12(2):790-806 (2022).
[91] Rashid S., Abouelmagd E.I., Khalid A., Farooq F.B., Chu Y.M., Some Recent Developments on Dynamical H-Discrete Fractional Type Inequalities in the Frame of Nonsingular and Nonlocal Kernels, Fractals, 30(2):2240110 (2022).
[92]  He Z.Y., Abbes A., Jahanshahi H., Alotaibi N.D., Wang Y., Fractional-Order Discrete-Time SIR Epidemic Model with Vaccination: Chaos and Complexity, Mathematics. 10(2):165 (2022).
[93]  Wang F., Khan M.N., Ahmad I., Ahmad H., Abu-Zinadah H., Chu YM., Numerical Solution of Traveling Waves in Chemical Kinetics: Time-Fractional Fishers Equations, Fractals, 30(02): 2240051 (2022).
[94] Fani M., Norouzi N., Ramezani M., Energy, Exergy, and Exergoeconomic Analysis of Solar Thermal Power Plant Hybrid with Designed PCM Storage, International Journal of Air-Conditioning and Refrigeration, 28(04): 2050030 (2020).
[95] Norouzi N., 4E Analysis of a Fuel Cell and Gas Turbine Hybrid Energy System, Biointerface Res. Appl. Chem., 11: 7568-7579 (2021).
[96] Norouzi N., Talebi S., Najafi P., Thermal-Hydraulic Efficiency of a Modular Reactor Power Plant by Using the Second Law of Thermodynamic, Annals of Nuclear Energy, 151:107936 (2021).
[97] Norouzi N., Kalantari G., Talebi S., Combination of Renewable Energy in the Refinery, with Carbon Emissions Approach, Biointerface Res. Appl. Chem., 10(4): 5780-5786 (2020).
[98] Norouzi N., Talebi S., Fabi M., Khajehpour H., Heavy Oil Thermal Conversion and Refinement to the Green Petroleum: A Petrochemical Refinement Plant Using the Sustainable Formic Acid for the Process, Biointerface Res. Appl. Chem., 10(5): 6088-6100 (2020).
[99] Khajehpour H., Norouzi N., Bashash Jafarabadi Z., Valizadeh G., Hemmati M.H., Energy, Exergy, and Exergoeconomic (3E) Analysis of Gas Liquefaction and Gas Associated Liquids Recovery Co-Process Based on the Mixed Fluid Cascade Refrigeration Systems, Iranian Journal of Chemistry and Chemical Engineering (IJCCE),  (2021).
[100] Rabipour S., Perceived Stress Levels of Medical and Non-Medical Staff in the Face of COVID-19, In Mental Health and Wellness in Healthcare Workers: Identifying Risks, Prevention, and Treatment (pp. 24-33). IGI Global (2022).
[101] Rabipour S., Norouzi, N., Relationship Between Governance Quality and Public Health in the Light of Covid-19 Pandemic Control: A Case Study for Southwest Asian Countries, In Handbook of Research on SDGs for Economic Development, Social Development, and Environmental Protection. IGI Global (2022).
[102] Norouzi, N., Rabipour S., Impacts of Pollutants in Different Sectors of the Economy on Health Care Expenditures, In Handbook of Research on SDGs for Economic Development, Social Development, and Environmental Protection. IGI Global (2022).
[102] Norouzi, N., Rabipour S.,  An Analysis of the Health Economic Impacts of COVID-19 and Government Financial Packages in Its Management, In Handbook of Research on Building Inclusive Global Knowledge Societies for Sustainable Development. IGI Global (2022).
[103] Khajehpour H., Norouzi N., Fani M., An Exergetic Model for the Ambient Air Temperature Impacts on the Combined Power Plants and its Management Using the Genetic Algorithm, International Journal of Air-Conditioning and Refrigeration, 29(01): 2150008 (2021).
[104] Norouzi N., Talebi S., Fani M., Khajehpour H., Exergy and Exergoeconomic Analysis of Hydrogen and Power Cogeneration Using an HTR Plant, Nuclear Engineering and Technology, 53(8): 2753-2760 (2021).
[106] Liu M., Li C., Cao C., Wang L., Li X., Che J., Yang H., Zhang X., Zhao H., He G., Liu X., Walnut Fruit Processing Equipment: Academic Insights and Perspectives, Food Engineering Reviews, 13(4): 822-57 (2021).
[107] Wang Y., Li C., Zhang Y., Yang M., Li B., Dong L., Wang J., Processing Characteristics of Vegetable Oil-Based Nanofluid MQL for Grinding Different Workpiece Materials, International Journal of Precision Engineering and Manufacturing-Green Technology, 5(2): 327-339 (2018).
[108] Qiu PL., Liu SY., Bradshaw M., Rooney-Latham S., Takamatsu S., Bulgakov TS., Tang SR., Feng J., Jin DN., Aroge T., Li Y., Multi-Locus Phylogeny and Taxonomy of an Unresolved, Heterogeneous Species Complex Within the Genus Golovinomyces (Ascomycota, Erysiphales), Including G. Ambrosiae, G. Circumfusus and G. Spadiceus, BMC Microbiology, 20(1):1-6 (2020).
[109] Yang Y., Gong Y., Li C., Wen X., Sun J., Mechanical Performance of 316 L Stainless Steel by Hybrid Directed Energy Deposition and Thermal Milling Process, Journal of Materials Processing Technology, 291: 117023 (2021).
[108] Li H., Zhang Y., Li C., Zhou Z., Nie X., Chen Y., Cao H., Liu B., Zhang N., Said Z., Debnath S., Extreme Pressure and Antiwear Additives for Lubricant: Academic Insights and Perspectives, The International Journal of Advanced Manufacturing Technology, 30:1-27 (2022).
[109] Jia D., Zhang Y., Li C., Yang M., Gao T., Said Z., Sharma S., Lubrication-Enhanced Mechanisms of Titanium Alloy Grinding Using Lecithin Biolubricant, Tribology International, 169: 107461 (2022).
[110] Zhang N., Jiao B., Ye Y., Kong Y., Du X., Liu R., Cong B., Yu L., Jia S., Jia K., Embedded Cooling Method with Configurability and Replaceability For Multi-Chip Electronic Devices, Energy Conversion and Management, 253:115124 (2022).
[111] Ye Y., Jiao B., Kong Y., Liu R., Du X., Jia K., Yun S., Chen D., Experimental Investigations on the Thermal Superposition Effect of Multiple Hotspots for Embedded Microfluidic Cooling, Applied Thermal Engineering, 202: 117849 (2022).
[112] Sun D., Huo J., Chen H., Dong Z., Ren R., Experimental Study of Fretting Fatigue In Dovetail Assembly Considering Temperature Effect Based on Damage Mechanics Method, Engineering Failure Analysis, 131: 105812 (2022).
[113] Yang Y., Wang Y., Zheng C., Lin H., Xu R., Zhu H., Bao L., Xu X., Lanthanum Carbonate Grafted ZSM-5 for Superior Phosphate Uptake: Investigation of the Growth and Adsorption Mechanism, Chemical Engineering Journal, 430:133166 (2022).
[114] Liu H., Wang Y., Li Q., Yang N., Wang Z., Wang Q., Research on the Evolution Characteristics of Oxygen-Containing Functional Groups During the Combustion Process of the Torrefied Corn Stalk, Biomass and Bioenergy, 158: 106343 (2022).
[115] Fan S., Wang Y., Cao S., Sun T., Liu P., A Novel Method for Analyzing the Effect of Dust Accumulation on Energy Efficiency Loss in Photovoltaic (PV) System, Energy, 234: 121112 (2021).
[116] Liu H., Li X., Ma Z., Sun M., Li M., Zhang Z., Zhang L., Tang Z., Yao Y., Huang B., Guo S., Atomically Dispersed Cu Catalyst for Efficient Chemoselective Hydrogenation Reaction, Nano Letters, 21(24): 10284-10291 (2021).
[117] Wu H., Zhang F., Zhang Z., Fundamental Spray Characteristics of Air-Assisted Injection System Using Aviation Kerosene, Fuel, 286:119420 (2021).
[118] Molla MA., Furukawa M., Tateishi I., Katsumata H., Suzuki T., Kaneco S., Photocatalytic Degradation of Fenitrothion in Water with TiO2 under Solar Irradiation, Water Conservation & Management (WCM), 2(2): 1-5 (2018).
[119] Syafiqah I., Yussof HW., The Use of Factorial Design for Analysis of Mercury Removal Efficiency Using Palm Oil Fuel Ash, Water Conservation and Management, 2(1): 10-12 (2018).