Synthesis of Green Zinc Oxide Nanoparticles Mediated by Syzygium cumini Induced Developmental Deformation in Embryo Toxicity of (Daniorerio) Zebrafish

Document Type : Research Article

Authors

1 Sri Paramakalyani College, Manonmaniam Sundaranar University, Alwarkurichi - 627412, INDIA

2 Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi - 627412, INDIA

3 Saveetha Dental College and Hospitals, SIMATS, Chennai – 600077, TN, INDIA

Abstract

This study investigated the synthesis of Zinc oxide (ZnO) nanoparticles using Syzygium cumini fruit (Indian blackberry) seed extract. The seeds extract of Syzygium cumini fruit have properties of anti-diabetic, anti-inflammatory, and anti-bacterial, and traditionally it has long been used in Indian folklore medicine. Zebrafish embryos and larvae were treated with 5 different concentrations (0, 25, 50, 75, 100, 150 µg/mL ) of Zinc oxide (ZnO) nanoparticles from 4 hours post fertilization (hpf). The results showed that exposure to 50-150 µg/mL zinc oxide nanoparticles (ZnO NPs) induced developmental toxicity in these embryos, causing mortality, hatching delay, and malformation. Exposure of 50-150 µg/mL  Zinc oxide (ZnO) nanoparticles to zebrafish embryo caused coagulated unhatched phenotype, spinal curvature, axis bent, tail malformation, yolk sac, and pericardial edema, at 72-96 hpf. These results will assist in elucidating the mechanisms of the developmental toxicity of green synthesized Zinc oxide nanoparticles during the embryonic development of zebrafish.

Keywords

Main Subjects


[1] Banerjee K., Prithviraj M., Augustine N., Pradeep S.P., Thiagarajan P., Analytical Characterization and Antimicrobial Activity of Nano Zirconia Particles, J. C. P. S., 9(3): 1186-1190 (2016).
[2] Jangra S., Stalin K., Dilbaghi N., Kumar S., Tawale J., Singh S., Pasricha R, Antimicrobial Activity of Zirconia (ZrO2) Nanoparticles and Zirconium Complexes, Journal of Nanoscience and Nanotechnology., 12: 7105-711 (2012).
[3] Dumrongrojthanath P., Thongtem T., Phuruangrat A., Thongtem S., Synthesis and Characterization of Hierarchical Multilayered Flower-Like Assemblies of Ag Doped Bi2WO6 and their Photocatalytic Activities, Superlattices and Microstructures, 64: 196–203 (2013).
[4] Phuruangrat A., Maneechote A., Dumrongrojthanath P., Ekthammathat N., Thongtem S., Thongtem T., Effect of pH on visible-light-driven Bi2WO6 nanostructured catalyst synthesized by hydrothermal method, Superlattices and Microstructures78: 106–115 (2015).
[5] Rao A., Schoenenberger M., Gnecco E., Characterization of Nanoparticles using Atomic Force Microscopy, Journal of Physics: Conference Series, 61: 971-976 (2007).
[6] Colvin V.L., The Potential Environmental Impact of Engineered Nanoparticles, Nat. Biotechnol., 21: 1166-1170 (2003).
[7] Navarro E., Baun A., Behra R., Hartmann N.B., Filser J., Miao A.J., Quigg A., Santschi P.H., Sigg L., Environmental Behavior and Ecotoxicity of Engineered Nanoparticles to Algae, Plants, and Fungi, Ecotoxicology, 17(5): 372 – 386 (2008).
[8] Keller A.A., McFerran S., Lazareva A., Suh S., Global Life Cycle Releases of Engineered Nanomaterials, J. Nanoparticle Res., 15(6): 1-17 (2013).
[10] Handy R.D., von der Kammer F., Lead J.R., Hassellöv M., Owen R., Crane M., The Ecotoxicology and Chemistry of Manufactured Nanoparticles, Ecotoxicology, 17(4): 287-314 (2008).
[11] Huang M.H., Mao S., Feick H., Yan H., Wu Y., Kind H., Weber E., Russo R., Yang P., Room-Temperature Ultraviolet Nanowire Nanolasers, Science, 292(5523): 1897-1899 (2001).
[12] Keis K., Hagfeldt A., Lindquist SE., Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes, Chem. Mater., 13: 4395–4398 (2001).
[14] Rajalakshmi M., Synthesis, Characterization and Application of Luminescent Silica Nanomaterials, Opt. Mater., 34: 1241–1245 (2012).
[15] Mirzaei H., Darroudi M., Eco-Friendly Synthesis of Antibacterial Zinc Nanoparticles using Sesamum indicum L. Extract., Ceram. Int.; 43: 907–914 (2016).
[16] Peng X., Palma S., Fisher N.S., Wong S.S., Effect of Morphology of ZnO Nanostructures on their Toxicity to Marine Algae, Aquat. Toxicol., 102(3-4): 186-196 (2011).
[17] Lin D., Xing B., Phytotoxicity of Nanoparticles: Inhibition of Seed Germination and Root Growth, Environ. Pollut., 150(2): 243-50 (2007).
[18] Adams L.K., Lyon D.Y., Alvarez P.J., Comparative Eco-Toxicity of Nanoscale TiO2, SiO2, and ZnO Water Suspensions, Water Res., 40(19): 3527-3532 (2006).
[19] Bai W., Zhang Z., Tian W., He X., Ma Y., Zhao Y., Chai Z., Comparative Metal Oxide Nanoparticle Toxicity using Embryonic Zebrafish, J. Nanoparticle Res., 12: 1645-1654 (2010).
[21] Wehmas L.C., Anders C., Chess J., Punnoose A., Pereira C.B, Greenwood J.A., Tanguay R.L., Comparative Metal Oxide Nanoparticle Toxicity using Embryonic Zebrafish, Toxicol. Rep., 2: 702-715 (2015).
[23] Chen D., Zhang D., Yu J.C., Chan K.M., Effects of Cu2O Nanoparticle and CuCl2 on Zebrafish Larvae and a Liver Cell-Line, Aquat. Toxicol., 105(3-4): 344-354 (2011).
[24] Felix L.C., Ortega V.A., Ede J.D., Goss G.G., Effects of Polymer-Coated Metal Oxide Nanoparticles on Goldfish (Carassius Auratus L.) Neutrophil Viability and Function, 12: 6589–6596 (2013).
[25] Felix L.C., Ortega V.A., Ede J.D., Goss G.G., Effects of Polymer-Coated Metal Oxide Nanoparticles on Goldfish (Carassius Auratus L.) Neutrophil Viability and Function, Nano Toxicol., 12: 6589–6596 (2013).
[26] Berry J.P., Gantar M., Gibbs P.D., Schmale M.C., The Zebrafish (Danio Rerio) Embryo as a Model System for Identification and Characterization of Developmental Toxins from Marine and Freshwater MicroalgaeComparative biochemistry and physiology, Toxicology & pharmacology CBP145(1): 61–72 (2007).
[27] Hao L., Chen L., Hao J., Zhong N., Bioaccumulation and Sub-Acute Toxicity of Zinc Oxide Nanoparticles in Juvenile Carp (Cyprinus Carpio): A Comparative Study with its Bulk Counterparts, Ecotoxicology and Environmental Safety, 91: 52-60 (2013).
[28] Mehinto A.C., Prucha M.S., Colli-Dula R.C., Kroll K.J., Lavelle C.M., Barber D.S., Comparative Analysis of Trace Elements Contained in Rhizoma Curcumae from Different Origins and Their Vinegar Products by ICP-MS Aquat. toxicol, 152: 186–94 (2014).
[29] Ayyanar M., Subash-Babu P., Syzygium Cumini (L.) Skeels: A Review of its Phytochemical Constituents and Traditional Uses, Asian Pac. J. Trop. Biomed., 2(3): 240-246 (2012).
[30] Salahuddin N.L., Kemary E.M., Ibrahim E.M., Synthesis and Characterization of ZnO Nanoparticles via Precipitation Method: Effect of Annealing Temperature on Particle Size, Nanosci.. Nanotechnol., 5(4): 82–88 (2015).
[31] Meshram J.V., Koli V.B., Kumbhar S.G., Borde L.C., Phadatare M.R., Pawar S.H., Structural, Spectroscopic and Anti-Microbial Inspection of PEG Capped ZnO Nanoparticles for Biomedical Applications, Mater. Res. Express, 5(4): 045016 (2018).
[32] Kanade K.G., Kale B.B., Aiyer R.C., Das B.K., Effect of Solvents on the Synthesis of Nano-Size Zinc Oxide and its Properties, Mater. Res. Bull., 41: 590–600 (2006).
[33] Gavade N.L., Kadam A.N., Gaikwad Y.B., Dhanavade M.J., Garadka K.M., Decoration of Biogenic AgNPs on Template Free ZnO Nanorods for Sunlight Driven Photocatalytic Detoxification of Dyes and Inhibition of Bacteria, J. Mater. Sci. Mater. Electron., 27(10): 11080–11091 (2016).
[34] Meshram J.V., Koli V.B., Kumbhar S.G., Phadatare M.R., Pawar S.H., Anti-Microbial Surfaces: An Approach for Deposition of ZnO Nanoparticles on PVA-Gelatin Composite Film by Screen Printing Technique, Mater. Sci. Eng., 73: 257–266(2017).
[35] Johnson M.K., Powell D.B., Cannon R.D., Vibrational-Spectra of Carboxyl to Complexes I. Infrared and Raman-Spectra of Berrylium(II) Acetate and Formate and of Zinc(II) Acetate and Zinc(II) Acetate Dehydrate, Spectrochimica Acta Part A: Molecular Spectroscopy, 37(10): 899–904 (1981).
[36] Janaki C., Sailatha E., Gunasekaran S., Synthesis, Characteristics and Antimicrobial activity of ZnO Nanoparticles, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 144: 17–22 (2015).
[37] Zlovar A.A., Orel Z.C., Kogej K., Zigon M., Polyol-Mediated Synthesis of Zinc Oxide Nanorods and Nanocomposites with Poly (Methyl Methacrylate), J. Nanomater., 9: (2012).
[38] Chithra M.J., Sathya M., Pushpanathan K., Effect of pH on Crystal Size and Photoluminescence Property of ZnO Nanoparticles Prepared by Chemical Precipitation Method, Acta Metall. Sin. Engl. Lett., 28(3): 394–404 (2014).
[39] Alves T.E.P., Kolodziej C., Burda C., Franco A., Effect of Particle Shape and Size on the Morphology and Optical Properties of Zinc Oxide Synthesized by the Polyol Method, J. Mater. Des., 146: 125–133 (2018).
[40] Femi V., Prabha P.H., Sudha P., Devibala B., Jerald A.L., Anti bacterial effect of ZnO-Au nanocomposites, Int. J. Biotechnol. Eng., 1: 1–8 (2011).
[43] Parng C., In vivo zebrafish assays for toxicity testing Curr Opin Drug Discov Devel., 1: 100-106 (2005).
[44] Kalishwaralal K.,  Jeyabharathi S.,  Sundar K., Muthukumaran A., A Novel One-Pot Green Synthesis of Selenium Nanoparticles and Evaluation of its Toxicity in Zebrafish Embryos Artif Cells, Nanomed. Biotechnol., 2: 471-477 (2016).
[47] Lee K.J, Nallathamby P.D., Browning L.M., Osgood C.J., Xu X.H., In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos, ACS Nano, 1(2):133-143 (2007).
[48] Duan J., Yu Y., Shi H., Tian L., Guo C., Toxic Effects of Silica Nanoparticles on Zebrafish Embryos and Larvae, Plos One, 8(9): 74606 (2013).