Methylene Blue Adsorption from Aqueous Solution Using Zn2(Bdc)2(Dabco) Metal-Organic Framework and Its Polyurethane Nanocomposite

Document Type : Research Article

Authors

1 Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, I.R. IRAN

2 Department of Nanochemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, I.R. IRAN

Abstract

In this work, Zn2(BDC)2(DABCO) metal-organic framework (MOF) was prepared by Zn = zinc acetate dehydrates, BDC = 1,4-benzenedicarboxylate, and DABCO = 1,4-diazabicyclo [2.2.2] octane. The MOF and its polyurethane (PU) nanocomposite were used to remove Methylene Blue (MB) as a harmful and toxic dye from an aqueous solution. Polyurethane polymer has been modified with a zinc-based metal-organic framework by the press method to develop an efficient adsorbent for the first time. Samples were characterized by Fourier Transform InfraRed (FT-IR) spectroscopy to evaluate functional groups, X-Ray Diffraction (XRD) analysis of crystal structure, field emission scanning electron microscope (FESEM) to determine morphology and size, BET analysis for measurement of surface area, and Ultraviolet–Visible (UV–Vis) spectroscopy to study MB adsorption. Methylene blue adsorption was reported by changing the amount of adsorbent, MB concentration, pH, and temperature of the solution over time. According to the results, increasing the amount and percentage of adsorbent, pH, and temperature of the solution increased the percentage of adsorption efficiency. Also, the MOF and its nanocomposite can be a good choice for the adsorption of methylene blue as a cationic dye due to its high level and low material consumption. The results show that Zn2(BDC)2(DABCO) MOF and its PU nanocomposite can have good potential for the development of various adsorbents.

Keywords

Main Subjects


[1] Yagub M.T., Sen T.K., Afroze S., Ang H.M., Dye and Its Removal from Aqueous Solution by Adsorption: A Review, Adv Colloid Interface Sci., 209: 172-184 (2014).
[2] Rafatullah M., Sulaiman O., Hashim R., Ahmad A., Adsorption of Methylene Blue on Low-Cost Adsorbents: A Review, J. Hazard. Mater., 177(1-3): 70-80 (2010).
[3] Silva F., Nascimento L., Brito M., da Silva K., Paschoal Jr W., Fujiyama R., Biosorption of Methylene Blue Dye Using Natural Biosorbents Made from Weeds, Materials., 12(15): 2486 (2019).
[4] Raeisi Kheirabadi N., Salman Tabrizi N., Sangpour P., Synthesis of Sodium Alginate-Derived Carbon Aerogel for Adsorptive Removal of Methylene Blue, Iran. J. Chem. Chem. Eng. (IJCCE), 39(5): 157-168 (2020).
[5] Pai S., Kini M.S., Selvaraj R., A Review on Adsorptive Removal of Dyes from Wastewater by Hydroxyapatite Nanocomposites, ESPR., 28: 11835–11849 (2021).
[6] Crini G., non-Conventional Low-Cost Adsorbents for Dye Removal: A Review, Bioresour. Technol., 97(9): 1061-1085 (2006).
[7] Anastopoulos I., Hosseini-Bandegharaei A., Fu J., Mitropoulos A.C., Kyzas G.Z., Use of Nanoparticles for Dye Adsorption: Review, J. Disper. Sci. Technol., 39(6): 836-847 (2018).
[8] Ajibola Adeyemo A., Olatunbosun Adeoye I., Solomon Bello O., Metal Organic Frameworks as Adsorbents for Dye Adsorption: Overview, Prospects and Future Challenges, Toxicol. Environ. Chem., 94(10): 1846-1863 (2012).
[9] Moradi P., Qanavati R., Mirzaei Ghaleh Ghobadi M., Reducing Nitrate from Water using Lanthanum-Modified Adsorbent: Optimization, Thermodynamics, Kinetics, Isotherms,  Iran. J. Chem. Chem. Eng. (IJCCE), 41(5): 1619-1633 (2022).
[10] Almezgagi M., Guzel Kaya G., Kar Y., Deveci H., Biochar Produced from Co-Pyrolysis of Olive Pomace & Crude Oil as an Adsorbent for Cr (VI) Removal from Aqueous Solutions, Iran. J. Chem. Chem. Eng. (IJCCE), 41(4): 1199-1210 (2022).
[11] Thusabantu N., Archford Munzeiwa W., Mudavanhu, N., Mukaratirwa-Muchanyereyi N., Chaukura N., Engineered Algal Biochar for the Sequestration of Cu2+ from Aqueous Solution, Iran. J. Chem. Chem. Eng. (IJCCE),  41(4): 1211-1223 (2022).
[12] Dizaj Khalili A., Ghaemi A., Yousefi M., Characterization of Phosphorus and Ground Granulated Blast-Furnace Slags as Low-Cost Adsorbents for Cu(II) Removal; Kinetic, Isotherm, and Thermodynamic Studies, Iran. J. Chem. Chem. Eng. (IJCCE), 41(4): 1126-1136 (2022).
[13] Mapombere G., Nyoni B., Sibali L.L., Chiririwa H., Seodigeng T., Adsorption of Mercury by Pterocarpus Anglolensis: Study on Adsorption Isotherms and Kinetics Iran. J. Chem. Chem. Eng. (IJCCE), 41(1): 143-153 (2022).
[14] Vijayaraghavan J., Zunaithur Rahman D., Thivya J., Removal of Ni (II) Ions from Wastewater by Raw and Modified Plant Wastes as Adsorbents: A Review, Iran. J. Chem. Chem. Eng. (IJCCE), 41(1): 174-206 (2022).
[15] Thamilarasi Maria Joseph V., Molagoundampalayam Venkatachalam S., Arun Kumar P., Adsorption of Molybdenum from Wastewater by Surface Altered Agricultural Solid Waste, Iran. J. Chem. Chem. Eng. (IJCCE), 41(6): 1883-1895 (2022).
[16] Djamila D., Chabani M., Hank Z., Combined Microwave-Peanut Hull Based Activated Carbon Process in the Removal of Oxytetracycline (OXT) from Aqueous Solution, Iran. J. Chem. Chem. Eng. (IJCCE), 41(6): 1896-1906 (2022).
[17] Pedram, T., Eshaghi, Z., Ahmadpour, A., Nakhaei, A., Optimization of Adsorption Parameters Using Central Composite Design for the Removal of Organosulfur in Diesel Fuel by Bentonite-Supported Nanoscale NiO-WO3, Iran. J. Chem. Chem. Eng. (IJCCE), 41(3): 808-820 (2022).
[18] Adeyemo A.A., Adeoye I., Adeoye O.S., Adsorption of Dyes using Different Types of Clay: A Review, Appl. Water Sci., 7: 543–568 (2017).
[20] Lamari R., Benotmane B., Mostefa F., Removal of Methyl Orange from Aqueous Solution Using Zeolitic Imidazolate Framework-11: Adsorption Isotherms, Kinetics and Error Analysis, Iran. J. Chem. Chem. Eng. (IJCCE), 41(6): 1985-1999 (2022).
[21] Alkan S., Karakoc E., Caliskan M., Savran A., Kubilay S., Adsorption of Textile Dyes on Willow Tree Pollen: Determination of Equilibrium, Kinetics, and Thermodynamic, Iran. J. Chem. Chem. Eng. (IJCCE), 41(5): 1588-1601 (2022).
[22] Ratnam Myneni V., Rao Kanidarapu N., Shaik F., Vangalapati M., Response Surface Modeling of the Removal of Methyl Orange Dye from an Aqueous Solution Using Magnesium Oxide Nanoparticles Immobilized on Chitosan, Iran. J. Chem. Chem. Eng. (IJCCE), 41(5): 1602-1618 (2022).
[23] Davarnejad, R., Azizi, A., Asadi, S., Mohammadi, M., Green Synthesis of Copper Nanoparticles Using Centaurea Cyanus Plant Extract: A Cationic Dye Adsorption Application, Iran. J. Chem. Chem. Eng. (IJCCE), 41(1): 1-14 (2022).
[24] Belgacem A., Ould Brahim I., Belmedani M., Hadoun H., Removal of Methyl Green Dye from Aqueous Solutions Using Activated Carbon Derived from Cryogenic Crushed Waste Tires, Iran. J. Chem. Chem. Eng. (IJCCE), 41(1): 207-219 (2022).
[25] Nacer D., Fatima O., Reda M., Synthesis of New Organo-Inorgano-Clay Materials Based on Metal Ions, CTMAB, and Bentonite. Application for Removal of Acid Dye, Iran. J. Chem. Chem. Eng. (IJCCE), 41(1): 431-445 (2022).
[26] Nazim Younes B., Djame N., Samira A., NaY Zeolite and TiO2 Impregnated NaY Zeolite for the Adsorption and Photocatalytic Degradation of Methylene Blue under Sunlight, Iranian Journal Chemistry and Chemical Engineering (IJCCE), 41(6): 1907-1920 (2022).
[27] Cheng T., Chen C., Ye C., Xie W., Zhang Z., Yuan T., Synthesis of KBiO3/Nano-Ag3PO4 Composite Photocatalyst and its Application for Degradation of Organic Pollutants under Visible Light, Iran. J. Chem. Chem. Eng. (IJCCE), 41(6): 1942-1960 (2022).
[28] Liang H., Hu X., Preparation of Magnetic Cellulose Nanocrystal-Modified Diatomite for Removal of Methylene Blue from Aqueous Solutions, Iran. J. Chem. Chem. Eng. (IJCCE), 41(3): 787-798 (2022).
[31] Dutta S., Gupta B., Kumar Srivastava S., Kumar Gupta A., Recent Advances on the Removal of Dyes from Wastewater Using Various Adsorbents: A Critical Review. Mater. Adv., 2: 4497-4531 (2021).
[32] Jawad, A.H., Abdulhameed, A.S., Najwa Abd Malek, N., ALOthman, Z.A., Statistical Optimization and Modeling for Color Removal and COD Reduction of Reactive Blue 19 Dye by Mesoporous Chitosan-Epichlorohydrin/Kaolin Clay Composite, Int. J. Biol., 164: 4218-4230 (2020).
[33] Jawad A.H., Saud Abdulhameed A.S., Kashi E., Mundher Yaseen Z., ALOthman Z.A., Rizwan Khan M., Cross-Linked Chitosan-Glyoxal/Kaolin Clay Composite: Parametric Optimization for Color Removal and COD Reduction of Remazol Brilliant Blue R Dye, J. Polym. Environ., 30: 164-178 (2021).
[34] Shazwani Abdul Mubarak N., Chuan T.W., Khor H.P., Jawad A.H., Wilson L.D., Sabar S., Immobilized Fe‑Loaded Chitosan Film for Methyl Orange Dye Removal: Competitive Ions, Reusability, and Mechanism, J. Polym. Environ., 29: 1050–1062 (2021).
[35] Bahrudin N.N., Nawi M.A., Jawad A.H., Sabar S., Adsorption Characteristics and Mechanistic Study of Immobilized Chitosan-Montmorillonite Composite for Methyl Orange Removal, J. Polym. Environ., 28: 1901–1913 (2020).
[36] Zhua Q.L., Xu Q., Metal–Organic Framework Composites, Chem. Soc. Rev., 43: 5468-5512 (2014).
[37] Li H., Eddaoudi M., O’Keeffe M., Yaghi, O., Design and Synthesis of An Exceptionally Stable and Highly Porous Metal-Organic Framework, Nature, 402: 276-279 (1999).
[38] Motakef-Kazemi N., Rashidian M., Taghizadeh Dabbagh S., Yaqoubi M., Synthesis and Characterization of Bismuth Oxide Nanoparticles by Thermal Decomposition of Bismuth-based MOF and Evaluation of its Nanocomposite, Iranian Journal Chemistry and Chemical Engineering (IJCCE), 40(1): 11-19 (2021).
[39] Pettinari C., Marchetti F., Mosca N., Tosi G., Drozdov A., Application of Metal−Organic Frameworks, Polym. Int., 66(6): 731-744 (2017).
[40] Hajiashrafi S., Motakef-Kazemi N., Preparation and Evaluation of ZnO Nanoparticles by Thermal Decomposition of MOF-5, Heliyon., 5(9): e02152 (2019).
[41] Motakef-Kazemi N., Shojaosadati S.A., Morsali A., In Situ Synthesis of a Drug-Loaded MOF at Room Temperature, Micropor Mesopor Mat., 186: 73-79 (2014).
[42] Motakef-Kazemi N., Shojaosadati S.A., Morsali A., Evaluation of the Effect of Nanoporous Nanorods Zn2(bdc)2(dabco) Dimension on Ibuprofen Loading and Release, J. Iran. Chem. Soc., 13(7): 1205-1212 (2016).
[43] Yaghi O.M., Li H., Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels, J. Am. Chem. Soc., 117(41): 10401–10402 (1995).
[44] Klinowski J., Almeida Paz F.A., Silva P., Rocha J., Microwave-Assisted Synthesis of Metal–Organic Frameworks, Dalton Trans., 40: 321-330 (2011).
[45] Son W.J., Kim J., Kim J., Ahn W.S., Sonochemical Synthesis of MOF-5. Chem. Commun., 47: 6336-6338 (2008).
[46] Al-Kutubi H., Gascon J., Sudhölter E.J.R., Rassaei L., Electrosynthesis of Metal–Organic Frameworks: Challenges and Opportunities, Chem. Electro. Chem., 2(4): 462-474(2015).
[47] Wang Z., Li Z., Nga M., Milner P.J., Rapid Mechanochemical Synthesis of Metal–Organic Frameworks using Exogenous Organic Base, Dalton Trans., 49: 16238-16244 (2020).
[48] Ataei F., Dorranian D., Motakef-Kazemi N., Bismuth-based Metal–Organic Framework Prepared by Pulsed Laser Ablation Method in Liquid, JTAP., 14: 1-8 (2020).
[49] Ataei F., Dorranian D., Motakef-Kazemi N., Synthesis of MOF-5 Nanostructures by Laser Ablation Method in Liquid and Evaluation of its Properties, J. Mater. Sci.: Mater. Electron., 32: 3819-3833 (2021).
[50] Jamal Uddin M., Ampiaw R.E., Lee W., Adsorptive Removal of Dyes from Wastewater using a Metal-Organic Framework: A Review, Chemosphere., 284: 131314 (2021).
[51] Mehmandoust M.R., Motakef-Kazemi N., Ashouri F., Nitrate Adsorption from Aqueous Solution by Metal–Organic Framework MOF-5, Iran. J. Sci.. Technol. A., 43(2): 443-449 (2019).
[52] Dehghan A., Mohammadi A.A, Yousefi M., Najafpoor A.A., Shams M., Rezania S., Enhanced Kinetic Removal of Ciprofloxacin onto Metal-Organic Frameworks by Sonication, Process Optimization and Metal Leaching Study, Nanomaterials., 9: 1422 (2019).
[53] Saghia M.H., Chabot B., Rezania S., Sillanpää M., Mohammadi A.A., Shams M., Alahabadi A., Water-Stable Zirconium and Iron-Based Metal-Organic Frameworks (MOFs) as Fluoride Scavengers in Aqueous Medium, Sep. Purif. Technol., 279: 118645 (2021).
[54] Lin S., Song Z., Che G., Ren A., Li P., Liu C., Zhang J., Adsorption Behavior of Metal–Organic Frameworks for Methylene Blue from Aqueous Solution, Micropor Mesopor Mat., 193: 27-34 (2014).
[55] Zhao X., Liu S., Tang Z., Niu H., Cai Y., Meng W., Wu F., Giesy J.P., Synthesis of Magnetic Metal-Organic Framework (MOF) for Efficient Removal of Organic Dyes from Water, Sci Rep., 5: 11849 (2015).
[57] Huda Paiman S., Rahman M.A., Uchikoshi T., Abdullah N., Dzarfan Othman M.H., Jaafar J., Hamimah Abas K., Fauzi Ismail A., Functionalization Effect of Fe-Type MOF for Methylene Blue Adsorption, J. Saudi Chem. Soc., 24(11): 896-905 (2020).
[58] Arora C., Soni S., Sahu S., Mittal J., Kumar P., Bajpai P.K., Iron Based Metal Organic Framework for Efficient Removal of Methylene Blue Dye from Industrial Waste, J. Mol. Liq., 284: 343-352 (2019).
[59] Shi L., Hu L., Zheng J., Zhang M., Xu J., Adsorptive Removal of Methylene Blue from Aqueous Solution using a Ni-metal Organic Framework Material, J. Disper. Sci. Technol., 37: 1226-1231 (2016).
[60] Yang Q., Wiersum A.D., Llewellyn P.L., Guillerm V., Serred C., Maurin G., Functionalizing Porous Zirconium Terephthalate UiO-66(Zr) for Natural Gas Upgrading: A Computational Exploration, Chem. Commun., 47: 9603-9605 (2011).
[62] Yanga Q., Rena S.S., Zhaoa Q., Lua R., Hang C., Chena Z., Zheng H., Selective Separation of Methyl Orange from Water using Magnetic ZIF-67 Composites, Chem. Eng. J., 333: 49-57 (2018).
[63] Odar M., Motakef Kazemi N., Nanohydroxyapatite and its Polycaprolactone Nanocomposite for Lead Sorbent from Aqueous Solution, Nanomed. Res. J., 5: 143-151 (2020).
[64] Sharma R.K., Solanki K., Dixit R., Sharma S., Dutta S., Nanoengineered Iron Oxide-based Sorbents for Separation of Various Water Pollutants: Current Status, Opportunities and Future Outlook, Environ. Sci.: Water Res. Technol., 7: 818-860 (2021).
[67] Gouthaman A., Auslin Asira J., Gnanaprakasam A., Sivakumar V.M., Thirumarimurugan M., Riswan Ahamed M.A., Azarudeen R.S., Enhanced Dye Removal using Polymeric Nanocomposite through Incorporation of Ag Doped ZnO Nanoparticles: Synthesis and Characterization, J. Hazard. Mater., 373: 493-503 (2019).
[68] Robaina N.F., Soriano S., Cassella R.J., Polyurethane Foam Loaded with SDS for the Adsorption of Cationic Dyes from Aqueous Medium: Multivariate Optimization of the Loading Process, J. Hazard. Mater., 167(1-3): 653-659 (2009).
[70] Reghioua A., Barkat D., Jawad A.H., Abdulhameed A.S., Rizwan Khan M., Synthesis of Schiff's base Magnetic Crosslinked Chitosan-Glyoxal/ZnO/Fe3O4 Nanoparticles for Enhanced Adsorption of Organic Dye: Modeling and Mechanism Study, Sustain. Chem. Pharm., 20: 100379 (2021).
[71] Reghioua A., Barkat D., Jawad A.H., Saud Abdulhameed S., Al-Kahtani A.A., ALOthman Z.A., Parametric Optimization by Box–Behnken Design for Synthesis of Magnetic Chitosan-Benzil/ZnO/Fe3O4 Nanocomposite and Textile Dye Removal, J. Environ. Chem. Eng., 9(3): 105166 (2021).
[73] Jawad A.H., Solehah Ahmad Norrahma S., Hamee, B.H., Ismail K., Chitosan-Glyoxal Film as a Superior Adsorbent for Two Structurally Different Reactive and Acid Dyes: Adsorption and Mechanism Study, Int. J. Biol., 135: 569-581 (2019).
[74] Marahel F., Mombeni Goodajdar B., Niknam L., Faridnia M., Pournamdari E., Doost S.M., Ultrasonic Assisted Adsorption of Methylene Blue Dye and Neural Network Model for Adsorption of Methylene Blue Dye by Synthesised Mn-doped PbS Nanoparticles, Int. J. Environ. Anal. Chem., 89: 1-22 (2021).
[75] Bhattacharjee C., Dutta S., Saxena V.K., A Review on Biosorptive Removal of Dyes and Heavy Metals from Wastewater using Watermelon Rind as Biosorbent, Environ. Adv., 2: 100007 (2020).
[76] Coeli Moreira Dias R., Miranda Góes A., Serakides R., Ayres E., Lambert Oréfice R., Porous Biodegradable Polyurethane Nanocomposites: Preparation, Characterization, and Biocompatibility Tests, Mater. Res., 13(2): 211-218 (2010).
[77] Jawad A.H., Sabar S., Azlan Mohd Ishak M., Wilson L.D., Solehah Ahmad Norrahma S., Talari M.K., Farhan A.M., Microwave-Assisted Preparation of Mesoporous Activated Carbon from Coconut (Cocos Nucifera) Leaf by H3PO4-Activation for Methylene Blue Adsorption, Chem. Eng. Commun., 204(10): 1563-5201 (2017).
[78] Haftan F., Motakef Kazemi N., The Sorbent based on MOF-5 and its Polyurethane Nanocomposite for Copper Adsorption from Aqueous Solution, Nanomed. Res. J., 6(3): 1-9 (2021).
[80] Shazwani Abdul Mubarak N., Bahrudin N.N., Jawad A.H., Hameed B.H., Sabar S., Microwave Enhanced Synthesis of Sulfonated Chitosan‑Montmorillonite for Effective Removal of Methylene Blue, J. Polym. Environ., 29: 4027–4039 (2021).
[81] Faraji H., Mohamadi A.A., Soheil Arezomand H.R., Mahvi A.H., Kinetics and Equilibrium Studies of the Removal of Blue Basic 41 and Methylene Blue from Aqueous Solution Using Rice Stems, Iranian Journal Chemistry and Chemical Engineering (IJCCE)., 34(3): 33-42 (2015).
[83] Mohammadi A.A., Alinejad A., Kamarehie B., Javan S., Ghaderpoury A., Ahmadpour M., Ghaderpoori M., Metal-Organic Framework Uio-66 for Adsorption of Methylene Blue dye from Aqueous Solutions, Int. J. Environ. Sci. Techno., 14: 1959–1968 (2017).
[84] Fallah Shojaei A., Tabatabaeian K., Zebardast M., Ferric Ion Modified Nano-MOF-5 Synthesized by a Direct Mixing Approach: A Highly Efficient Adsorbent for Methylene Blue Dye, Scientia Iranica., 25(3): 1323-1334 (2018).
[86] Jawad A.H., Nadiah Mohd Firdaus Hum N., Saud Abdulhameed A., Azlan Mohd Ishak M., Mesoporous Activated Carbon from Grass Waste via H3PO4-Activation for Methylene Blue Dye Removal: Modelling, Optimization, and Mechanism Study, International Journal of Environmental Analytical Chemistry., 17: 102 (2020).
[87] Li X., Han D., Zhang M., Li B., Wang Z., Gong Z., Liu P., Zhang Y., Yang X., Removal of Toxic Dyes from Aqueous Solution using New Activated Carbon Materials Developed from Oil Sludge Waste, Colloid., Surf. A-Physicochem. Eng. Asp., 578: 123505 (2019).
[88] Jawad A.H., Abdulhameed A.S., Wilson L.D., Syed-Hassan S.S.A., ALOthman Z.A., Rizwan Khan M., High Surface Area and Mesoporous Activated Carbon from KOH-Activated Dragon Fruit Peels for Methylene Blue Dye Adsorption: Optimization and Mechanism Study, Chin. J. Chem. Eng., 32: 281-290 (2021).
[89] Jawad A.H., Saud Abdulhameed A., Hanafiah M.A.K.M., ALOthman Z.A., Rizwan Khan M., Surip S.N., Numerical Desirability Function for Adsorption of Methylene Blue Dye by Sulfonated Pomegranate Peel Biochar: Modeling, Kinetic, Isotherm, Thermodynamic, and Mechanism Study, Korean J. Chem. Eng., 38(7): 1499-1509 (2021).
[90] Ghourchian F., Motakef-Kazemi N., Ghasemi E., Ziyadid H., Zn-based MOF-Chitosan-Fe3O4 Nanocomposite as an Effective Nano-Catalyst for Azo Dye Degradation, J. Environ. Chem. Eng., 9(6): 106388 (2021).