Prebiotic Synthesis of Sugar and Molecular Dynamic Simulation of 2,3-Dihydroxypropanal Adsorption on Montmorillonite

Document Type : Research Article

Authors

Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, I.R. IRAN

Abstract

This study initially investigated sugar production through a Formose Reaction (FR) using methanol as a solvent and an aerosil (fumed silica) as a catalyst. The products observed in the reaction medium were 2,3-dihydroxypropanal (glyceraldehyde) and 1,2-ethanediol (ethylene glycol). The results showed that if the target of the reaction is to produce glyceraldehyde (GA) and ethylene glycol (EG), the aerosil is a better option as a catalyst in the FR. Finally, the Molecular Dynamic (MD) simulation of 2,3-dihydroxypropanal adsorption was investigated on montmorillonite (MMT) as a mineral adsorbent. MD simulation indicated that the adsorption of GA molecule at the MMT-water interface occurred due to the oxygen of the carbonyl group. The Radial Distribution Function (RDF) of the solvent around the main atoms of GA and the Root-Mean-Square Deviation (RMSD) were calculated from the MD simulation results using Gaussian and LAMMPS software. The RDF results showed a weak hydrogen bond between oxygen atoms of the hydroxyl group and solvent molecules. Moreover, the solvent molecules had no significant influence on the behavior of tetrahedral carbons of GA, indicating that the oxygen atom of the carbonyl group had a higher ability to form a hydrogen bond with water compared to the other atoms. The RMSD of carbonyl oxygen, carbonyl carbon, hydroxyl oxygen, and tetrahedral carbon increased during a simulation time of 20 ns, respectively. Evaluation of the mean distance of calcium atom at the surface of MMT and different atoms of GA showed that the GA molecule was chemically adsorbed on the surface of MMT by oxygen of carbonyl. The mean distances of C-tetrahedral, C-carbonyl, O-hydroxyl, and O-carbonyl in the GA structure from the surface of MMT (distance from calcium ions) were estimated to be 3.8, 3.2, 3.0, and 2.6 Å, respectively.
 

Keywords

Main Subjects


[1] Lambert J.B., Guruswamy-Thangavelu S.A., In: Zelisko P.M., (ed) “Bio-Inspired Silicon-Based Materials”. Springer, Berlin, Heidelberg (2014).
[3] Pascal R., Boiteau L., Auguste Commeyras A., In: Walde P., (ed) “Prebiotic Chemistry from Simple Amphiphiles to Protocell Models”. Springer, Berlin, Heidelberg (2005).
[5] Niaza K., Khanb F., Ajmal Shah M., In: Sanches Silva A., Seyed Nabavi F., Saeedi M., Seyed Nabavi M., (eds) “Recent Advances in Natural Products Analysis”. 5th ed., Elsevier, Amsterdam (2020).
[6] Pestunova O., Simonov A., Snytnikov V., Stoyanovsky V., Parmon V., Putative Mechanism of the Sugar Formation on Prebiotic Earth Initiated by UV-Radiation, Adv. Space Res., 36(2): 214-219 (2005).
[7] Lamour S., Pallmann S., Haas M., Trapp O., Prebiotic Sugar Formation Under Nonaqueous Conditions and Mechanochemical Acceleration, Life., 9(2): 52 (2019).
[8] Moldoveanu S.C., Pyrolysis of Carbohydrates, Tech. Instrum. Anal. Chem., 28: 419-470 (2010).
[9] Clough S.R., In: Wexler P., (ed) “Encyclopedia of Toxicology”. 3rd ed., Elsevier, Amsterdam (2014).
[10] Stovbun S.V., Zanin A.M., Shashkov M.V., Skoblin A.A., Zlenko D.V., Tverdislov V.A., Mikhaleva M.G., Taran O.P., Parmon V.N., Spontaneous Resolution and Super-coiling in Xerogels of the Products of Photo-Induced Formose Reaction, Orig Life Evol. Biosph., 49(3): 187-196 (2019).
[11] Omran A., Menor-Salvan C., Springsteen G., Pasek M., The Messy Alkaline Formose Reaction and Its Link to Metabolism, Life., 10(8): 125 (2020).
[13] Butlerow A., Bildung einer zuckerartigen Substanz Durch Synthese, Justus Liebigs Ann. Chem., 120(3): 295-298 (1861).
[14] Michitaka T., Imai T., Hashidzume A., Formose Reaction Controlled by a Copolymer of N,N-Dimethylacrylamide and 4-Vinylphenylboronic Acid, Polymers., 9(11): 549 (2017).
[15] Shapiro R., Prebiotic Ribose Synthesis: A Critical Analysis, Origins Life Evol. Biospheres., 18(1-2): 71-85 (1988).
[16] Toxaverd S., Homochirality in Bio-Organic Systems and Glyceraldehyde in the Formose Reaction, J. Biol. Phys., 31(3-4): 599-606 (2005).
[17] Lambert J.B., Guruswamy-Thangavelu S.A., Ma K., The Silicat-Mediated Formose Reaction: Bottom-Up Synthesis of Sugar Silicat, Science., 327(5968): 984-986 (2010).
[18] Veszprémi T., Fehér M., In: Veszprémi T., Fehér M., (eds) Quantum Chemistry”. Springer, Boston (1999).
[20] Feng T., Li M., Zhou J., Zhuang H., Chen F., Ye R., Campanella O., Fang Z., Application of Molecular Dynamics Simulation in Food Carbohydrate Research-A Review, Innovative Food Sci. Emerging Technol., 31: 1-13 (2015).
[21] Rapaport D.C., The Art of Molecular Dynamics Simulation, 2nd ed., Cambridge University Press, Cambridge (2004).
[22] Rezazadeh Mofradnia S., Ashouri R., Abtahi N., Yazdian F., Rashedi H., Sheikhpour M., Ashrafi F., Production and Solubility of Ectoine: Biochemical and Molecular Dynamics Simulation Studies, Iran. J. Chem. Chem. Eng. (IJCCE), 39(6): 259-269 (2020).
[23] Board Jr J.A., Causey J.W., Leathrum Jr J.F., Windemuth A., Schulten K., Accelerated Molecular Dynamics Simulation with the Parallel Fast Multipole Algorithm, Chem. Phys. Lett., 198(1-2): 89-94 (1992).
[24] Haile J.M., “Molecular Dynamics Simulation: Elementary Methods”, 1st ed., Wiley, New York (1992).
[25] Yusuff O.K., Tunde Raji A., Abdul Raheem M.A.O., Boluwaji Ojo D., Explicit Solvent Molecular Dynamics Simulation Studies of the Dissociation of Human Insulin Hexamer into the Dimeric Units, Adv. J. Chem. A., 3: 730-739 (2020).
[26] Alder B.J., Wainwright T.E., Phase Transition for a Hard Sphere System, J. Chem. Phys., 27(5): 1208-1209 (1957).
[27] Alder B.J., Wainwright T.E., Studies in Molecular Dynamics. I. General Method, J. Chem. Phys., 31(2): 459-466 (1959).
[28] Madsen L.J., Ha S.N., Tran V.H., Brady J.W., In: French A.D., Brady J.W., (eds) “Computer Modeling of Carbohydrate Molecules”, American Chemical Society, Washington D.C (1990).
[29] Fadda E., Woods R.J., Molecular Simulations of Carbohydrates and Protein–Carbohydrate Interactions: Motivation, Issues and Prospects, Drug Discovery Today., 15(15-16): 596-609 (2010).
[30] Frank M., In: Lütteke T., Frank M., (eds) “Glycoinformatics”. Humana Press, New York (2015).
[31] Cseri T., Békássya S., Bódás Z., Ágai B., Figueras F., Acetylation of B15C5 Crown Ether on Cu Modified Clay Catalysts, Tetrahedron Lett., 37(9): 1473-1476 (1996).
[32] Almasri D.A., Rhadfi T., Atieh M.A., McKay G., Ahzi S., High Performance Hydroxyiron Modified Montmorillonite Nanoclay Adsorbent for Arsenite Removal, Chem. Eng. J., 335: 1-12 (2018).
[33] Tyagi B., Chudasama C.D., Jasra R.V., Determination of Structural Modification in Acid Activated Montmorillonite Clay by FT-IR Spectroscopy, Spectrochim. Acta, Part A., 64(2): 273-278
(2006).
[34] Darvish M., Moradi Dehaghi S., Taghavi L., Karbassi A.R., Removal of Nitrate Using Synthetic Nano Composite ZnO/Organoclay: Kinetic and Isotherm Studies, Iran. J. Chem. Chem. Eng. (IJCCE), 39(1): 105-118 (2020).
[35] Bhattacharyya K.G., Guptab S.S., Adsorption of a Few Heavy Metals on Natural and Modified Kaolinite and Montmorillonite: A Review, Adv. Colloid Interface Sci., 140(2): 114-131 (2008).
[36] Zhang D., Zhou C.H., Lin C.X., Tong D.S., Yu W.H., Synthesis of Clay Minerals, Appl. Clay Sci., 50(2): 1-11 (2010).
[37] Uddin F., In: Zoveidavianpoor M., (ed) “Current Topics in the Utilization of Clay in Industrial and Medical Applications”. IntechOpen, London (2018).
[38] Shamsipur M., Bahrami Adeh N., Sadegh Hajitarverdi M., Zarei F., Yazdimamaghani M., Synthesis and Properties of Plasticized Sulfur-Montmorillonite Nanocomposites by Melt-Blending, Iran. J. Chem. Chem. Eng. (IJCCE), 36(6): 1-9 (2017).
[39] Terán E.J., Montes M.L., Rodríguez C., Martino L., Quiroga M., Landa R., Torres Sánchez R.M., Díaz Pace D.M., Assessment of Sorption Capability of Montmorillonite Clay for Lead Removal from Water Using Laser–Induced Breakdown Spectroscopy and Atomic Absorption Spectroscopy, Microchem J., 144: 159-165 (2019).
[40] Liu X., Zhu R., Ma J., Ge F., Xu Y., Liu Y., Molecular Dynamics Simulation Study of Benzene Adsorption to Montmorillonite: Influence of the Hydration Status, Colloids Surf., A, 434: 200-206 (2013).
[41] Greathouse J.A., Cygan R.T., Molecular Dynamics Simulation of Uranyl (VI) Adsorption Equilibria onto an External Montmorillonite Surface, Phys. Chem. Chem. Phys., 7(20): 3580-3586 (2005).
[42] Khodadadi-Moghaddam M., Sarabi-Aghbolagh S., Molecular Dynamic Simulation of Adsorption of tri-Bisphenol-A-Diglycidyl Ether on Montmorillonite, Nashrieh Shimi va Mohandesi Shimi Iran (NSMSI), 38(2): 173-182 (2019), [in Persian.
[43] Vojood A., Khodadadi Moghaddam M., Ebrahimzadeh-Rajaei G., Mohajeri S., Shamel A., Increasing in the Selectivity of Formose Reaction for Glyceraldehyde Production in the Presence of Fumed Silica and Montmorillonite Catalysts, Chem. Methodol. 5(5): 422-432 (2021).
[44] Vojood A., Khodadadi Moghaddam M., Ebrahimzadeh-Rajaei G., Mohajeri S., Shamel A., Comparison of Selectivity of Ethylene Glycol Synthesis and Glyceraldehyde Biomolecule through Formose Reaction in Water and Methanol Solvent,
J. of Applied Chemistry
., 17(63): 39-51 (2022), [in Persian].
[45] Viani A., Gualtieri A.F., Artioli G., The Nature of Disorder in Montmorillonite by Simulation of X-ray Powder Patterns, ‎Am. Minral., 87(7): 966-975 (2002).
[46] Scocchi G., Posocco P., Fermeglia M., Pricl S., Polymer-Clay Nanocomposites: A Multiscale Molecular Modeling Approach, J. Phys. Chem. B., 111(9): 2143-2151 (2007).
[47] Abdulfatai U., Uzairu A., Uba S., Shallangwa G., Quantitative Structure-Properties Relationship of Lubricating Oil Additives and Molecular Dynamic Simulations Studies of Diamond-Like-Carbon (DLC), Iran. J. Chem. Chem. Eng. (IJCCE), 39(4): 281-295 (2020).
[48] Cygan T.R., Liang J.J., Kalinichev A.G., Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field, J. Phys. Chem. B., 108(4): 1255-1266 (2004).
[49] Yue H., Zhao Y., Maa X., Gong J., Ethylene Glycol: Properties, Synthesis, and Applications, Chem Soc Rev., 41(11): 4089-4380 (2012).