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ABSTRACT: In this study, nanocomposites of Thermoplastic Polyurethane (TPU) clay are synthesized 

and used as a gas barrier property. The NCO-terminated TPU prepolymer was prepared by solution 

polymerization method using a 1:2 ratio of Polyethylene glycol (PEG2000) and Tolylene  

2,4-diisocyanate (TPI). Organo-modified montmorillonite clay, Cloisite 25A(C25A) was used as ample 

compatibilization with PEG/TPI matrix. The prepared nanocomposite was characterized by Fourier 

Transform InfraRed (FT-IR) spectroscopy, X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), 

and ThermoGravimetric Analysis (TGA). The main functional group peaks of the nanocomposite 

materials are observed in FT-IR spectroscopy. The nanocomposites exhibited better thermal 

stabilities than pristine Polyurethane which is investigated by TGA. Thermal stability in the sample 

with 5 wt.% of TPU/C25A-5 material has improved up to 70ºC. The XRD results have confirmed  

the penetration of clay into TPU matrix, with the disappearance of the characteristic peak (2θ = 4.81º) 

corresponding to the d-spacing of the organoclay. SEM analysis confirmed the dispersion of nanoclay 

in TPU matrix. The mechanical properties of nanocomposites such as the tensile strength and Young's 

modulus of TPU/Cl25A nanocomposites were increased with increasing clay percentage. The gas 

permeability test was studied using a Membrane separation testing unit. Significant improvements  

in barrier properties were observed. A remarkable decrease was seen in polyurethane incorporated 

with 5 Wt.% organoclay when tested with oxygen and nitrogen gas. 
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INTRODUCTION  

One of the most potential materials in recent decades is 

Polymer-Layered silicate Nanocomposite (PLN). PLN is  

a new class of materials produced by the dispersion  

of a percentage weight of clay in a polymer matrix  

 

 

 

that differs from the nanoscale [1,2]. Because of the high 

interaction between components, they were synthesized 

using a simple, low-cost approach and superior to traditional 

materials. [3]. Fire retardancy, optical, mechanical, and  
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barrier properties of polymer/clay nanocomposite are employed 

in various consumer products like cable, automobile, 

electronics, packaging, coatings, bottle batteries, and the 

film sector [4-6]. Delaminating of nanoclays using melt 

shearing, in situ polymerization, and the sol–gel method 

have all been used to synthesize Polymer clay 

nanocomposite. Nanoclay dispersion improves bulk polymer 

properties such as thermal stability, gas barrier, 

mechanical strength, and flame retardancy. [7-10]. The 

main causes of clay minerals as reinforcing materials are 

their low cost, density, high availability, aspect ratio, and 

large surface area, which enhance the properties of the 

polymer. Montmorillonite (Mt) is a member of the 2:1 

phyllosilicate. Cloisite 25A (C25A) and organoclay 

obtained by Mt are modified by reinforcing polymeric 

matrices of methyl tallow bis-2-hydroxy ethyl quaternary 

ammonium. C25A is better compatible with polyurethane 

(Pu) in comparison to other organo-modified clay Cloisite 

10A, Cloisite 20A [11-13]. 

Polyurethane (Pu) is a potential elastomer with 

outstanding qualities that provide excellent performance 

and processing flexibility. TPU is made up of two parts: 

soft and hard. The soft component is commonly made up 

of bio-based polyether or polyester, while the hard part 

comprises diisocyanate and chain extenders [14,15]. The 

property of Pu can be tailored by the types of raw 

materials, their composition, and processing conditions.  

Pu is widely used for coatings, adhesives, sealants, foams, 

and fibers due to its versatile properties. PU clay materials 

have attracted attention for inferior gas barrier properties. 

The micro-phase separation of Pu which is the difference 

in polarity and thermodynamic incompatibility of the two 

segments is the main reason for inferior gas barrier 

properties [16-18]. The gas barrier properties of the 

polymer nanocomposite improve mainly because of three 

reasons, (i) an increase in tortuous path, (ii) an increase  

in interaction between polymer and clay by bonding, (iii) 

an increase in movement of polymer chains in the presence 

of intercalated or exfoliated clay [19]. A series of PE 

nanocomposites containing Cloisite 20A and graphite 

nanoparticles were prepared and introduced as potential 

materials for the production of polymeric pipes in natural 

gas transfer systems [20].     

Many studies and scientists have concentrated  

on improving the gas barrier properties of PU by altering 

the basic materials and formulations [21,22]. The effect of 

hard segment content on the thermal, morphological, and 

mechanical properties of polyurethane polymers has been 

discussed based on diol and chain extenders [23]. 

Moreover, many researchers have utilized nano-clay or 

functionalized graphene nanocomposite to improve the gas 

barrier properties of PU. When compared to pure PU, 

Peretz Damari et al. found that nanocomposite based on graphene 

generated by the solution approach performed better [24,25]. 

Poly(vinyl alcohol)/nanoclay nanocomposite foams 

containing different concentrations of cloisite 30B were 

used for water absorption capacity [26]. The Processing 

technique plays a significant role in improving the properties 

of final polymer clay nanocomposites. Many kinds of 

literature report that solution mixing gives the best results 

than melt mixing. The dispersion of clay minerals in the 

polymer matrix is still a big challenge in melt mixing [27]. 

Finnigan et al. reported that adding 3% and 7% weight of 

Cloisite 30B to TPU, resulted in a decrease in tensile 

strength and elongation due to the degradation of Pu  

in the melt compounding process [28]. As a result, solution 

mixing was performed in this investigation to achieve 

homogeneous clay dispersion in the Pu matrix. B. Adak et al. 

are reported the effect of two different organoclay and their 

He gas barrier properties of Pu nanocomposites [29]. The 

water absorption properties of 3% of nanoclay with 

CMC/PVA nanocomposites are reported [30]. 

 In this study, we synthesized Polyurethane /clay 

nanocomposites are used as a gas barrier property. The 

effect of nano-clay was evaluated on morphology and the 

mechanical properties of PU/C25A nanocomposites. To 

the best of our knowledge, the role of organo-modified 

clay on the behavior of PU/Cl25A nanocomposite material 

has not been reported yet.  

 

EXPERIMENTAL SECTION 

Materials  

 All reagents are used as an analytical grade. 

Polyethylene glycol (PEG2000) and the Potassium salt of 

hydroquinone sulphonic acid are procured from Fluka, 

India. Isophorone-diisocyanate (IPDI) and Tolylene 2,4- 

diisocyanate, (TDI) are purchased from Sigma Aldrich, 

India. Dibutyltin-dilaurate (DBTDL) is obtained from 

Fluka. N, N-dimethyl formamide (HPLC grade) was 

purchased from Sisco Research Laboratories, Mumbai, 

India. Cloisite 25A (Sodium montmorillonite modified 

with dimethyl hydrogenated tallow,2-ethylhexyl  
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Fig. 1: The reaction procedure and the structure of TPU/C25A nanocomposites synthesized in the study. 

 

quarternary ammonium cation) was received from 

Southern Clay, USA. Initially, clay was dried in a hot air 

oven at 80 ºC for 6 hours to remove moisture content. 

Dimethylformamide (DMF) (Merck, India) was used as 

such without further purification. 

 

Synthesis of TPU clay nanocomposite 

 The TPU clay nanocomposite is prepared as described 

earlier in the literature [31]. Polyethylene glycol (0.01 mol/L) 

was taken in a three-necked reaction kettle and dissolved 

in 50 mL of Dimethylformamide. After swelling of 

Polyethylene glycol in DMF calculated quantity of 

Cloisite 25A (1 Wt.% regarding the monomer) and 

Tolylene 2,4- diisocyanate (TDI) (0.02 mol/L) was slowly 

added to a reaction vessel. The potassium salt of 

hydroquinone sulphonic acid (0.0065g) was dissolved  

in DMF and added dropwise at 50ºC for chain extension. 

The heating was continued until the theoretical isocyanate 

content of 4-5% was reached, as determined by the 

dibutyl-amine method and from the disappearance of IR 

absorption of the NCO group at 2270 cm-1. The reaction 

mixture is heated up to 80 ºC under a nitrogen atmosphere 

for 4 hours. TPU/C25A nanocomposite film is obtained by 

pouring the emulsion onto a Teflon mold. The experiment 

is repeated with 3, 5, and 7 Wt.% of clay, and the prepared 

composite material is dried and various analytical 

techniques characterize it. The reaction procedure and the 

structure of TPU/C25A nanocomposites synthesized  

in this study are given in Fig. 1. The codes and composition 

of the nanocomposite are given in Table 1.  

 

Characterization  

The FT-IR spectra of clay nanocomposite are analyzed 

using a Nicolet impact 400 FT-IR spectrometer. The X-Ray 

Diffraction (XRD) measurements of the clay and 

nanocomposites are taken with the Rigaku Miniflex 

diffractometer (30 kV,10 mA) with Cu Kα radiation (λ = 1.54 Å) 

at a scanning rate of 2 ºC/min at room temperature.  

The spectra are recorded in the 2θ range 0 to 15 degrees. 

The basal spacing of the nanocomposites is calculated 

using Bragg's equation. The composite specimens are 

analyzed by X-ray diffraction using films of 2 mm 

thickness that are obtained at 180 ºC compression molding. 

The thermal stability of the polymer clay nanocomposites 

is performed on the Perkin Elmer, Thermal Gravimetric 

Analysis (TGA) system at a  20 ºC/min heating rate in N2 

atmosphere. The sample was heated at room temperature 

to 800 ºC. Scanning electron microscopic images of 

fractured surfaces of tensile specimens are carried out 

using the JEOL JEM-5800 with an acceleration voltage of 

20 kV. Mechanical studies are measured using a UTM 

Universal Testing Machine (Instron-3369, UK). A load of 100N 

is applied at a crosshead speed of 50 mm/min. The dumb- 

bell shaped specimens with a diameter of 15 mm wide 
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Table 1: Composition and codes of Polyurethane /Clay Nanocomposites. 

Sample Code 
Composition 

NCO / OH ratio TDI PEG Clay Wt.% Hard Segment (mol %) 

TPU 1.0 75 25 0 21 

TPU/C25A-1 1.1 75 25 1 22 

TPU/C25A-3 1.3 75 25 3 23 

TPU/C25A-5 1.5 75 25 5 24 

TPU/C25A-7 1.7 75 25 7 25 

 

at the two ends and 10 mm wide at the neck with a thickness 

ranging from 1.1 to 2.9 mm are used to carry out the test as 

per ASTM D: 638 test procedures. The permeation study is 

done at the constant pressure method using a membrane 

separation unit. 

 

RESULTS AND DISCUSSION  

FT-IR Analysis 

The Structural characteristics of pure TPU and 

TPU/C25A nanocomposites are carried out using FT-IR 

analysis [32]. The infrared spectrum of the TPU and TPU1 

nanocomposite are given in Fig. 2. FT-IR spectra of the 

described samples were carried out in the region  

4000-500 cm-1 at room temperature. The presence of a 

characteristic peak at 3300 cm-1 is assigned to the NH 

bending vibration of urethane which is produced by the 

reaction of the NCO and OH group.  The following 

absorption bands of 660 cm-1 (CH out of plane bending), 

1156 cm-1 (C-O stretching), 1390 cm-1 (CH bending), 1458 

cm-1 (CH2 plane scissoring), 2953 cm-1 (CH2 symmetric 

stretching) respectively are shown by TPU spectrum. The 

bands occur around 1050 - 1300 cm-1 which corresponds 

to the C-O stretching vibration of the ester group.  

The characteristic absorption bands of TPU/C25A-1 

weight percentage for the nanocomposites are revealed. 

The following are characteristic bands 660 cm-1 (C-H 

vibration of aromatic ring), 2975 to 2888 cm-1 (CH 

stretching), 1088 cm-1 (Si-O asymmetric stretching), 

1259,1088,1018 cm-1 (C-O stretching vibration of ester 

group) respectively. The CH stretching of nanocomposite 

does not change, and it indicates the clay particle did not 

react with H bond formation by urethane –NH groups. FT-

IR spectra demonstrated the effective complexation and 

strong interaction between clay and polymer.  

 

Wide angle X-ray diffraction Analysis 

The XRD measurement is used to calculate the basal  
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: FT- IR spectra of neat TPU and TPU/C25A (TPU1) 

nanocomposite. 

 

spacing (d001) at peak positions according to Bragg's law . 

The wide-angle XRD patterns of pure clay and TPU/C25A 

nanocomposite of different wt.% is shown in Fig. 3. 

Polymer/clay nanocomposites are formed by the insertion 

of polymer chains between the clay layers with increased 

gallery space [33]. A shift in the d001 peak of clay in the 

XRD spectrum is associated with the formation of 

intercalated structure, while the disappearance of this peak 

is indicative of an exfoliated structure in nanocomposites. 

The organomodified MMT clay ie Cloisite 25A shows  

a 001 characteristic peak at 2θ = 4.81º, corresponding  

to the silicate-interlayer spacing value of 18.5 Å. However, 

these TPU/C25A nanocomposites show the absent of  

a strong peak up to 6º angle in the spectral range which 

indicates that the insertion of polyurethane exfoliated the 

silicate layer of the Cloisite 25A as a bulk state. The results 

show that the clay contents are homogeneously exfoliated 

and randomly dispersed in the TPU matrix. 

 

Thermogravimetric analysis 

The TGA thermograms of TPU and TPU/C25A with 

different Wt.% of clay nanocomposites at 20 °C under  
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Table 1: Thermal decomposition of pure TPU and TPU/C25A nanocomposites. 

TPU/C25A Nanocomposites with various C25A clay content wt.% 

 TPU TPU/C25A-1 TPU/C25A-3 TPU/C25A-5 TPU/C25A-7 

T1
 oC 207.42 308.24 331.46 356.76 341.68 

T2 
oC 402.34 492.43 505.07 532.36 512.42 

Residue wt.% 19.24 21.47 24.87 27.27 23.62 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: XRD spectra of: (a) Cloisite 25A clay and prepared 

nanocomposites at different concentrations of clay nanocomposites 

b) TPU/C25A 1% (c)TPU/C25A 3% (d) TPU/C25A 5%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: TGA thermograms of neat (a) pure TPU (b) TPU/C25A 

-1 (c) TPU/C25A -3 (d) TPU/C25A -5 nanocomposites. 

 

 

nitrogen is illustrated in Fig. 4. The values of TPU and 

TPU/C25A are given in Table 2. Generally, the thermal 

stability of the nanocomposites is affected by organoclay 

in two ways, one is due to degradation of polymer by 

catalysis effect and another one is oxygen increasing the 

stability by barrier property [34]. The present study shows 

that the barrier effect is predominant as a low fraction of 

clay was added to the polymer matrix.   

Pure TPU/C25A undergoes two different stages of 

thermal degradation. The first stage is attributed to the 

acetate group elimination, which occurs degradation 

temperature range up to 300 to 400 oC. The second stage 

is the degradation of the main chain. The nanocomposites 

showed no weight loss under 207 oC and all the samples 

undergo decomposition commenced at around 300 oC. 

This result reveals that the TPU is completely anhydrous 

and possess relatively good thermal stability. Moreover, it 

was found that the TPU/C25A nanocomposites exhibited 

a slightly higher thermal decomposition temperature, i.e., 

308 ºC, compared to TPU adduct 207 ºC respectively. The 

TPU/C25A nanocomposite samples left a residue of about 

22 % at 800 º C whereas the TPU adduct left about 19 % 

at the same temperature. Such results indicate that 85% of 

the initial clay added was quantitatively introduced into  

the TPU adduct as an exfoliated structure and it might be 

changing the degradation mechanism of TPU/C25A 

nanocomposites under high temperatures.  

T1 and T2 is the decomposition temperature at 20%  

and 60% of the weight loss, respectively.  Pure TPU has  

a temperature of T1 = 207 º C and T2 = 402 º C, whereas 

TPU/C25A nanocomposites have increased the 

temperature from 320 º C and 500 º C, respectively.  

As a result, at the maximum decomposition temperature, 

the highest percentage of clay is successfully achieved. 

Finally, the TGA results suggest that the mobility of  

the polymer segments and clay at interfaces are partially 

suppressed by the interaction between them, resulting  

in a delay in polymer degradation. The thermal stability of 

the nanocomposites has improved when compared to that 

of pure TPU confirming positive structural changes 

[35,36]. 

 

Scanning electron microscopy analysis 

Scanning Electron Microscopy is used to analyze  

the modified clay dispersion in TPU nanocomposites  

as the initial stage. Scanning electron images of TPU with  
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Fig. 5: Scanning electron micrographs of (a) TPU (b) TPU/C25A - 1 (c) TPU/C25A - 3 (d) TPU/C25A - 5 nanocomposites. 

 

various clay weight contents are shown in Fig. 5. The SEM 

images are used to examine the film surfaces of 

nanocomposites and calculate the size of clay filler 

agglomerates on the film surfaces. Under this magnification, 

the clay particles are equally dispersed inside the TPU 

matrix structure in the presence of tiny agglomerates, 

whereas the SEM images of pure TPU and TPU/C25A 

nanocomposites show significant variances. These clay 

particles range in size from 0.5 to 100 micrometers. The 

presence of greater contact between modified clay and this 

polymer results in better clay dispersion inside the TPU 

matrix [37,38]. The clay fillers are homogeneously 

disseminated in the TPU matrix, and the surface film is 

coarsely rough, according to the photographs acquired.  

The high viscosity and cross-linking of the dispersed phase 

during solution polymerization can result in an uneven 

surface. The film surfaces of TPU and TPU with 1%, 3%, 

and  5%  C25A nanocomposites have the best results in 

filler dispersion in TPU matrix, as evidenced by XRD 

spectra, according to the SEM pictures in Fig. 5. Exfoliation, 

intercalation, and aggregation are difficult to investigate 

decisively using SEM, which is easily reflected in XRD 

research. Fig. 5a has shown that 0 wt.% organoclay is 

smooth and compact, with no evidence of pores, whereas in 

Fig. 5b, the surface of TPU nanocomposites with 1 wt.% of 

organoclay is completely rough, which is attributed to the 

homogeneous distribution of the organoclay aggregate  

in the polymer matrix. The high viscosity and cross-linking 

of the dispersed phase during in situ polymerization can 

result in an uneven surface. Fig. 5c shows a micrograph of 

3 wt.% of organoclay with the best dispersion of the 

organoclay. SEM images of TPU nanocomposite containing 

5 wt.% Cl25A are shown in Fig. 5d, which shows a higher 

ratio of agglomerates. 

 

Mechanical properties 

The mechanical properties of TPU/C25A nanocomposites 

are summarized in Fig. 6. Tensile Strength (TS) and percent 

Elongation At Break (EB) test results are listed in Table 3. 

The tensile strength and elongation at break increases  

with an increase in the clay content up to 5 wt.% are shown 

in Fig. 6. In general, mixing Cloisite 25A and TPU has 

resulted in the diffusion of polymer chains into modified 

organophillic silicate layers and strong interfacial 

interactions. Hence it is expected that nanocomposites can 

tolerate more external load in comparison to the pure TPU. 

The tensile strength changed to 13.2 MPa which shown  

an 80% increment when 5% clay is added to TPU  

in comparison with pure TPU. This is due to the toughening 

and strengthening of TPU by the insertion of 

homogeneously dispersed clay in the TPU matrix. The TS 

and EB begin to decrease composites containing 7 wt.% due 

to the aggregation of clay content, causing a weak 

interaction between the TPU and clay layers. 



Iran. J. Chem. Chem. Eng. Effect of Clay Modifier on the Structure ... Vol. 41, No. 11, 2022 
 

Research Article                                                                                                                                                                3627 

Table 2: Mechanical data of TPU/C25A nanocomposites. 

Sample Code Tensile strength (MPa) Young's Modulus (MPa) Elongation at break (%) 

TPU 7.8 ± 0.17 12.2 ± 0.82 658 ± 18 

TPU/C25A-1 8.8 ± 0.22 18.3 ± 1.33 743 ± 32 

TPU/C25A-3 11.6 ± 0.43 21.2 ± 2.76 810 ± 46 

TPU/C25A-5 13.2 ± 0.68 24.3 ± 3.24 942 ± 51 

TPU/C25A-7 12.8 ± 0.20 20.2 ± 2.68 902 ± 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Tensile strength and Elongation at break versus 

organoclay in TPU/C25A nanocomposites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Effect of clay concentration on Young's modulus in 

TPU/C25A nanocomposites. 

 

Young's modulus of the nanocomposites with different 

clay wt.% and their error bar graph is shown in Fig. 7. Such 

results indicate that incorporating clay might reduce the 

molecular mobility of polymer chains, resulting in a less 

flexible material with a high Young's modulus. Results 

have proved that although nano clay showed a synergistic 

effect in tensile strength, they caused a significant 

reduction in polymer flexibilities [39,40]. 

 

Gas permeability adsorption study 

The permeation study was done using the membrane 

separation unit at the constant pressure method. The 

oxygen permeability values of TPU/C25A nanocomposites 

are listed in Table 4. The TPU membrane is sealed within 

the two-pressure cell. High-pressure oxygen (1.5 bar) is 

kept in one cell and the other cell is maintained at 

atmospheric pressure. The amount of gas transported 

through the membrane is determined from the following 

tortuous path model or Nielsen model equation. 

( )
c

0 c c

1P

P 1 A 2

−
=

+ 
                                                              (1) 

Where P is the gas permeability of nanocomposite, P0 is  

the gas permeability of polymer, ∅𝑐 is the volume fraction of 

the clay,  and 𝐴𝑐 is the average aspect ratio of clay respectively. 

For TPU/C25A nanocomposite film, the oxygen and 

nitrogen permeability decreases with increasing clay 

loading, indicating that the organoclay enhances the 

oxygen and nitrogen barrier of the TPU. The diffusion 

coefficient of gases depends on the molecular size of the 

gas, rigidity, and mobility of polymer chains, and 

condensability of oxygen gas. Oxygen promotes higher 

solubility in the polymer due to the condensability of O2 is 

107K. The oxygen permeability is reduced by 56% with  

5 wt.% of clay. When the clay loading is above 5 wt.%  

the barrier properties are reduced. Using the clay platelet 

dimensions we calculate the relative permeability for 

different clay stack numbers (N). The aspect ratio of the 

clay platelets is assumed to be 218 nm, the typical value 

for MMT. The permeation rate in oxygen and nitrogen gas 

with error bar graph was given in Fig. 8. The steady-state 

diffusion of solutes through many layered membranes 

loads with monodispersed fillers aligned in a regular array 

via the following equation [41-43].  
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Table 4: Oxygen and Nitrogen permeability coefficient of TPU/C25A nanocomposites. 

Sample Code Clay (Wt%) 
Permeability coefficient (10-10(STP)cmcm3 s-2 cmHg-1) 

Oxygen Nitrogen 

TPU 0 3.27 ± 0.42 3.26 ± 0.82 

TPU/C25A 1 2.76 ± 0.62 3.02 ± 1.02 

TPU/C25A 3 2.44 ± 0.98 2.68 ± 0.54 

TPU/C25A 5 1.92 ± 0.76 2.12 ± 0.36 

TPU/C25A 7 1.74 ± 0.57 1.83 ± 0.67 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Permeation rate in O2, N2 gas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: The relative O2, N2 permeability of TPU/C25A 

nanocomposites as a function clay volume fraction for different 

clay stack numbers (N), ‒‒ prediction of Eq. 1; ♦, • 

experimental data. 

 

( )2 2
0

P 1

P 1 N

−
=

− +  
                                                       (2) 

Nelson's tortuous model Eq. (1) predicts the stack 

number for TPU nanocomposites is around 2, as shown in 

Fig. 9. The major assumption made during the 

development of Eq. (2) is that the clay platelets are 

monodispersed and are aligned in a regular array.  

 

CONCLUSIONS 

TPU/C25A nanocomposites are prepared successfully 

by the solution polymerization method. The interaction 

between clay and polyurethane has proved the potential 

application of composite material to enhance oxygen and 

nitrogen permeability. FT-IR results have confirmed 

successful complexation and strong interaction between 

clay and polymer. The absence of a peak at 2θ = 4.81º  

in TPU/C25A in XRD analysis has indicated that the 

prepared nanocomposite is exfoliated and homogeneously 

dispersed in the polymer chain. SEM images show that the 

clay particles are equally dispersed inside the TPU matrix 

structure in the presence of tiny agglomerates, whereas the 

SEM images of pure TPU and TPU/C25A nanocomposites 

show significant variances. The results of TGA exhibited 

that the nanocomposite has higher thermal stability 

compared to TPU polymer. TGA results indicate that 85% 

of the initial clay added was quantitatively introduced into 

the TPU adduct as exfoliated structure and it might be 

changing the degradation mechanism of TPU/C25A 

nanocomposites under high temperature. Mechanical 

studies have also revealed that tensile strength and 

elongation at break increases with increasing clay content, 

while Young's modulus also increases. The TPU/C25A 

nanocomposite films have shown better barrier properties 

to oxygen than TPU due to the formation of the exfoliated 

nanostructure. The oxygen and nitrogen permeability 

coefficient of the TPU decreased after it was incorporated 

with clay. This enhancement in the barrier property  

is attributed to the clay content being well-dispersed  

in the polymer chain and improving the oxygen permeability 

by 56 %. It is concluded that the incorporation 
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of clay has successfully improved the barrier properties of 

TPU/C25A nanocomposites whereby this improvement 

may aid in packaging materials.  
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