Synthesis, Characterization, Crystal Structure and Density Functional Investigation of Dialkyl(phenyl((4-(phenyl diazenyl)phenyl) amino)methyl) Phosphonate

Document Type : Research Article

Authors

1 Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, I.R. IRAN

2 Department of Chemistry, Shahid Beheshti University, Tehran, I.R. IRAN

Abstract

The reaction of 4-phenylazo-phenylamine and benzaldehydes with dimethyl phosphite resulted in three new α-azoaminophosphonates in excellent yields. Molecular identification of synthesized compounds were probed using NMR, FT-IR, and elemental analysis techniques. The single crystal X-ray diffraction studies were used to determine the molecular structure of dimethyl [(4-methoxyphenyl ((4-phenyl diazenyl) phenyl) amino) methyl] phosphonate. The synthesized molecule was crystallized in the monoclinic space group P21/c with a=11.213(2), b=19.205(4), c=11.429(2) Å, β = 116.95(3), V= 2193.8(8) Å3. Density functional theory calculation with B3LYP/6-311++G (2d, 2p) basis set has been used to determine geometry parameters and harmonic vibrational frequencies. The optimized geometrical parameters calculated by density functional theory show satisfactory agreement with experimental values.

Keywords

Main Subjects


[2] Palacios F., Alonso C., Santos J.M., Synthesis of β-Aminophosphonates and-Phosphinates, Chem. Rev. 105: 899-932(2005).
[3] Kukhar V.P.., Hudson H.R., Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity, John Wiley & Sons Ltd, June 2000. ISBN: 978-0-471-89149-9.
[4] Moonen K., Laureyn I., Stevens C.V., Synthetic Methods for Azaheterocyclic Phosphonates and Their Biological Activity, Chem. Rev., 104: 6177-6216 (2004).
[5] Pan W., Ansiaux C., Vincent S.P., Synthesis of acyclic Galactitol-and lyxitol-Aminophosphonates as Inhibitors of UDP-Galactopyranose Mutase, Tetrahedron Lett., 48: 4353-4356(2007).
[6] Duke S.O., Powles S.B., Glyphosate: A Once‐in‐ a‐Century Herbicide, Pest Manag. Sci., 64: 319-325(2008).
[7] Small D.M., Coombes J.S., Bennett N., Johnson D.W., Gobe G.C., Oxidative stress, Anti‐Oxidant Therapies and Chronic Kidney Disease, Nephrology, 17(4): 311-321(2012).
[9] Kirby A.J., Warren S.G., "The Organic Chemistry of Phosphorus", Elsevier Pub. Co. (1967).
[10] Atmani A., Combret J.C., Malhiac C., Mulengi J.K., β, γ-Unsaturated α-Aminophosphonates: Synthesis and Reactivity, Tetrahedron Lett., 41: 6045-6048 (2000).
[11] Ordóñez M., Viveros-Ceballos J.L., Sayago F.J., Cativiela C., Stereoselective Synthesis of α-amino-H-Phosphinic Acids and Derivatives, Synthesis, 49: 987-997 (2017).
[12] Chandrasekhar S., Prakash S.J., Jagadeshwar V., Narsihmulu C., Three Component Coupling Catalyzed by TaCl5–SiO2: Synthesis of α-amino Phosphonates, Tetrahedron Lett., 42:  5561-5563 (2001).
[13] Mohammadiyan E., Ghafuri H., Kakanejadifard A., A New Procedure for Synthesis of α-Aminophosphonates by aqueous Formic Acid as an Effective and Environment-Friendly Organocatalyst, J. Chem. Sci., 129: 1883-1891(2017).
[14] Heydari A., Karimian A., Ipaktschi J., Lithium Perchlorate/Diethylether Catalyzed Aminophosphonation of Aldehydes, Tetrahedron Letters., 39: 6729-6732 (1998).
[15] Palacios F., Aparicio D., opez Y.L., de los Santos J.M., Addition of Amine Derivatives to Phosphorylated 1,2-diaza-1,3-butadienes. Synthesis of a-Aminophosphonates, Tetrahedron Letters, 45: 4345–4348 (2004).
[16] Hamed M.A., Shaban E., Kafafy H., El Gokha A.A.A., El Sayed I., Synthesis and Characterization of Novel Azo Disperse Dyes Containing a-amino Phosphonate and Their Dyeing Performance on Polyester Fabric, Egypt. J. Chem., 89-95 (2017).
[17] Mirazizi F., Bahrami A., Haghbeen K., Shahbani Zahir H., Bakavoli M., Legge R. L., Rapid and Direct Spectrophotometric Method for Kinetics Studies and Routine Assay of Peroxidase Based on Aniline Diazo Substrates, J. Enzyme Inhibit. Med. Chem., 31: 1162-1169 (2016).
[18] Stoe C., "X–SHAPE: Program for Crystal Optimization for Numerical Absorption Correction, Version 2.05", Stoe & Cie GmbH: Darmstadt, Germany, DOI (2005).
[19] Sheldrick G.S., “SHELXS-97 and SHELXL-97, Program for Crystal Structure Solution and Refinement”, University of Göttingen, Germany, (1997).
[20] Prince E., Wilson A., "International Tables for X-Ray Crystallography”, Vol. C, Kluwer Academic Publisher, Doordrecht, The Netherlands, (1995).
[21] Stoe C., "X-STEP32, Crystallographic Package, Version 1.07 b", Stoe & Cie GmbH: Darmstadt, Germany, DOI (2000).
[22] Frisch M., Trucks G., Schlegel H.B., Scuseria G., Robb M., Cheeseman J., Montgomery Jr J., Vreven T., Kudin K., Burant J., "Gaussian 03, Revision C. 02”, Gaussian Inc, Wallingford, ct, 26 (2004).
[23] Dennington R., Keith T., Millam J., Eppinnett K., Hovell W.L., Gilliland R., "GaussView”, Version, (2003).
[24] Omidi S., Khojasteh V., Kakanejadifard A., Ghasemian M., Azarbani F., Synthesis, Characterization, Spectroscopy And Biological Activity of 4-((3-formyl-4-hydroxyphenyl) azo)-1-alkylpyridinium Salts, J. Chem. Sci., 130:114, 1-9 (2018).
[25] Govindasamy P., Gunasekaran S., Experimental and Theoretical Studies of (FT-IR, FT-Raman, UV–Visible and DFT) 4-(6-methoxynaphthalen-2-yl) butan-2-one, Spec. Chim. Acta. A., 149: 800-811 (2015).
[26] Govindarajan M., Ganasan K., Periandy S., Mohan S., DFT (LSDA, B3LYP and B3PW91) Comparative Vibrational Spectroscopic Analysis of Α-Acetonaphthone, Spec. Chim. Acta. A., 76: 12-21 (2010).
[27] Teimouri A., Chermahini A.N., Taban K., Dabbagh H.A., Experimental and CIS, TD-DFT, AB Initio Calculations of Visible Spectra and The Vibrational Frequencies of Sulfonyl Azide-Azoic Dyes, Spec. Chim. Acta. A., 72: 369-377 (2009).