Adsorption of Hg2+ onto Novel Mesocellular Foams Silica Functionalized with Disodium Ethylenediaminetetraacetate: Thermodynamics, Isotherm, and Kinetics Studies

Document Type : Research Article

Authors

1 Department of Basic Science, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, Jilin Province, P.R. CHINA

2 Research Center for Nanotechnology, Changchun University of Science and Technology, Changchun, Jilin Province, P.R. CHINA

Abstract

Mercury is one of the most important heavy metal elements of environmental pollution, and it is very important for its control. MesocCllular Foam (MCF) silica was prepared by hydrothermal method, and the prepared material was characterized by Powder X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), 77 K low-temperature nitrogen gas adsorption-desorption. Herein, the authors aimed to improve the adsorptive performance of MCF against mercury ions through a functionalization using disodium ethylenediaminetetraacetate (EDTA-Na2). Our novel material was then used in the batch adsorption of Hg2+, where the maximum conditions were reached after 35 minutes of contact time at pH 3 with the adsorbent weight of 0.1 g. The maximum adsorption amount of Hg2+ in the aqueous phase was 139.64 mg Hg2+ / g (modified MCF). The maximum desorption ratio of Hg2+ was 75.23% achieved by using 0.1 mol/L hydrochloric acid solution. The process for the adsorption of Hg2+ conforms to the quasi-second-order adsorption kinetics and Langmuir adsorption isotherm. The results of the low-temperature N2 adsorption-desorption curve at 77 K showed that Hg2 + had entered the MCF pore channels. This novel material is effective in removing Hg2+ from the water medium via batch adsorption.

Keywords

Main Subjects


[1] Cheng X., Heavy Metal Pollution Needs Urgent Attention in Taihu Basin, Water Resour. Protect., 4:39-41(2002).
[2] Zhou Q. Y., Li G. C., Tang Z. C., Research on the Status and Treatment of Heavy Metal Pollution
in China
, Light Ind. Technol., 4:98-99 (2013).
[3] Ding X.Y., Tang S.X., Ecological Purification Effect of Plant and Basalt on Heavy Metals in Water, Anhui Agricul. Sci., 47:60-63 (2019).
[4] Boening D.W., Ecological Effects, Transport, and Fate of Mercury: A General Review, Chemosphere, 40(12): 1335-1351(2000).
[5] Guo Y.N., Fang Z.K., Hu J. H., Progress in the Treatment of Wastewater Containing Heavy Metals by Chemical Precipitation, Ind. Water Treat., 31:9-13 (2011).
[6] Azzam A.M., El-Wakeel S.T., Mostafa B.B., El-Shahat M.F., Removal of Pb, Cd, Cu, and Ni from Aqueous Solution Using Nano-Scale Zero Valent Iron Particles, J. Env. Chem. Eng., 4(2):2196-2206 (2016).
[7] Wang S.G., Wang K.K., Dai C., Shi H.Z., Li J.L., Adsorption of Pb2+ on Amino-functionalized Core–shell Magnetic Mesoporous SBA-15 Silica Composite, Chem. Eng. J., 262:897-903 (2015).
[8] Guo R.Q., Chai S.Q., Mao J.T., Synthesis of a Modified Chelating Resin and Its Adsorption and Desorption of Hg2+ of Water Body, Environ. Sci. Technol., 31:14-19 (2013).
[9] Wu J., Li Q. B., Deng X., Lu Y. H., Research Advance of Heavy Metals by Biological Adsorption, Ion Exch. Adsor., 14: 180-187 (1998).
[10] Guo Y.Q., Song L., Progress of Heavy Metal Wastewater Pollution and Its Control Technology, Guangzhou Chem. Indus., 38:18-20 (2010).
[11] Fu F., Wang Q., Removal of Heavy Metal Ions from Wastewaters: A Review, J. Environ. Manage., 92: 407-418 (2011).
[12] Gupta S., Sharma S. K., Kumar A., Biosorption of Ni(II) Ions from Aqueous Solution Using Modified Aloe Barbadensis Miller Leaf Powde, Water Sci. Eng., 12:27 (2019).
[13] Zenasni M.A., Benfarhi S., Merlin A., Molina S., George B., Meroufel1 B. Adsorption of Nickel in Aqueous Solution onto Natural Maghnite, Mater. Sci. Appl., 4:153-161 (2013).
[14] Ahmed, A.M.M., Ali, A.E., Ghazy, A.H., Adsorption Separation of Nickel from Wastewaterby Using Olive Stones, Adv. J. Chem.-Section A, 2:79-93 (2019).
[16] Xue X.M., Li F.T., Removal of Cu(II) From Aqueous Solution by Adsorption onto Functionalized SBA-16, Micropor. Mesopor. Mater., 116(1-3):116-122 (2008).
[18] Li Y., Bai P., Yan Y., Yan W., Shi W., Xu R., Removal of Zn2+, Pb2+, Cd2+, and Cu2+ from Aqueous Solution by Synthetic Clinoptilolite, Micropor. Mesopor. Mater., 273:203-211 (2019).
[20] Wang S.G., Wang K.K., Dai C., Shi H.Z., Li J.L., Adsorption of Pb2+ on Amino-functionalized Core–shell Magnetic Mesoporous SBA-15 Silica Composite, Chem. Eng. J., 262:897-903 (2015).
[21] Liu Y., Pan J. M., Chen J., Xie J. M., Li C.X., Yan Y.S., Progress of Modified Silica-Based Micro/Nano Materials and Their Application in Separation Chemistry, Metall. Anal., 30:37-46 (2012).
[22] Rahmi L., Iqhrammullah M., Audina U., Husin H., Fathana H., Adsorptive Removal of Cd(II) Using Oil Palm Empty Fruit Bunch-Based Charcoal/Chitosan-EDTA Film Composite, Sustain. Chem. Pharm., 21:100449 (2021).
[23] Zhao P.Y., Zhang G.J., Xu Y., Lv Y.K., Yang Z.X., Cheng H.Z., Development of Amine-functionalized Silica Foams with Hierarchical Pore Structure for CO2 Capture, Energ. Fuel., 33:3357-3369 (2019).
[24] Wijesiri R.P., Knowles G.P., Yeasmin H., Hoadley A.F.A., Chaffee A.L., CO2 Capture from Air Using Pelletized Polyethylenimine Impregnated MCF Silica, Ind. Eng. Chem. Res., 58:3293-3303 (2019).
[25] Daoura O., Daher S., Kaydouh M.N., Hassan N.E., Massiani P., Launay F., Boutros M., Influence of the Swelling Agents of Siliceous Mesocellular Foams on the Performances of Ni-based Methane Dry Reforming Catalysts, Int. J. Hydrog. Energy, 43(36):17205-17215 (2018).
[26] He R., Wang Z.H., Tan L., Zhong Y., Li W.M., Xing D., Wei C.H., Tang Y.W., Design and Fabrication of Highly Ordered Ion Imprinted SBA-15 and MCM-41 Mesoporous Organosilicas for Efficient Removal of Ni2+ from Different Properties of Wastewaters, Micropor. Mesopor. Mater., 257:212-221 (2018).
[27] Wang S.G., Wang K.K., Dai C., Shi H.Z., Li J.L., Adsorption of Pb2+ on Amino-functionalized Core–shell Magnetic Mesoporous SBA-15 Silica Composite, Chem. Eng. J., 262:897-903 (2015).
[28] Schmidt W.P., Lukens W.W., Zhao D.Y., Yang P., Chmelka B.F., Stucky G.D., Mesocellular Siliceous Foams with Uniformly Sized Cells and Windows, J. Am. Chem. Soc., 121:254-255 (1999).
[30] Jawad A.H., Norrahma S.S.A., Hameed B.H., Ismail K., Chitosan-Glyoxal Film as a Superior Adsorbent for Two Structurally Different Reactive and Acid Dyes: Adsorption and Mechanism Study, Int. J. Biol. Macromal., 135:569-581 (2019).
[32] Liu J.H., Huang C.X., Huang Y., Spectrophotometric Study on the Reaction of 5-Br-PADAP with Mercury (II) in the Presence of Surfactant, Phys. Test. Chem. Anal., 35B(5):218-219 (1999).
[33] Lagergren S., Zur Theorie Der Sogenannten Adsorption Geloester Stoffe (About the Theory of So-called Adsorption of Soluble Substances), Kungliga Svenska Vetenskapsakademiens Handlingar Band, 24:1-39 (1898).
[36] Ho Y.S., McKay G., Pseudo-second Order Model for Sorption Processes, Process Biochem., 34(5):451-465 (1999).
[37] Langmuir I., The Constitution and Fundamental Properties of Solids and Liquids, J. Am. Chem. Soc., 38(11):2221-2295 (1916).
[38] Langmuir I., The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum, J. Am. Chem. Soc., 40(9):1361-1403 (1918).
[39] Alqadami A.A., Naushad M., Alothman Z.A., Ghfar A.A., Novel Metal-organic Framework (MOF) Based Composite Material for the Sequestration of U(VI) and Th(IV) Metal Ions from Aqueous Environment, ACS Appl. Mater. Interf., 9(41): 36026-36037 (2017).
[40] Rahmi R., Lubis S., Az-Zahra N., Puspita K., Iqhrammullah M., Synergetic Photocatalytic and Adsorptive Removals of Metanil Yellow Using TiO2/Grass-Derived Cellulose/Chitosan (TiO2/GC/CH) Film Composite, IJE Transactions B: Appl. , Int. J. Eng., 34(8):1827-1836 (2021).
[41] Freundlich H.M.F., Uber Die Adsorption in Losungen, Z Phys. Chem., 57:385-471 (1906).
[44] Brunauer S., Emmett P.H., Teller E., Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc., 60:309-319 (1938).
[45] Barrett E.P., Joyner L.G., Halenda P.P., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computation from Nitrogen Isotherms, J. Am. Chem. Soc., 73:373-380 (1951).
[46] Wuhan University, "Analytical Chemistry (Second Edition)", Higher Education Press, Beijing, P.R. China p.592 (1982).
[47] Dindar M.H., Yaftian M.R., Hajihasani M., Rostamnia S., Refinement of Contaminated Water by Cr(VI), As(V) and Hg(II) Using N-Donor Ligands Arranged on SBA-15 Platform; Bath and Fixed-Bed Column Methods, J. Taiwan. Inst. Chem., 67:325-337 (2016).
[48] Dindar M.H., Yaftian M.R., Rostamnia S., Potential of Functionalized SBA-15 Mesoporous Materials for Decontamination of Water Solutions from Cr(VI), As(V) and Hg(II) Ions, J. Environ. Chem. Eng., 3(2):986-995 (2015).
[49] Sen A.K., De A.K., Adsorption of Mercury(II) by Coal Fly Ash, Water Res., 21(8): 885-888.
[50] Yao C., He T.R., Ran S., Wang Z.B., Wang H., Adsorption and Desorption of Hg2+ in Water by Thiol Group Modified Peat, Indus. Water Treat., 40 (10):67-71 (2020).
[51] Zhang B.B., Yang Z., Xue B., Ding X.Y., Lou J.F., Wang S., Chen W.J., Xu G.M., Adsorption of Aquatic Hg2+ by Biochar Obtained from Coix Straw, Ecol. Environ. Sci., 30 (5):1051-1059 (2021).
[52] Li G.L., Zhao Z.S., Liu J.Y., Jiang G.B., Effective Heavy Metal Removal from Aqueous Systems by Thiol Functionalized Magnetic Mesoporous Silica, J. Hazard. Mater., 192(1): 277-283 (2011).
[53] Chowdhury S., Mishra R., Saha P., Kushwaha P., Adsorption Thermodynamics, Kinetics and Isosteric Heat of Adsorption of Malachite Green onto Chemically Modified Rice Husk, Desalination, 265(1-3): 159-168 (2011).
[54] Zhou Y.M., Zhang M., Hu X.Y., Wang X.H., Niu J.Y., Ma T.S., Adsorption of Cationic Dyes on a Cellulose-Based Multicarboxyl Adsorbent, J. Chem. Eng. Data, 58: 413-421 (2013).
[55] Naushad M., Ahamad T., Sharma G., Albadarin A.B., Alam M.M., Alothman Z.A., Alshehri S. M., Ghfar A.A., Synthesis and Characterization of a New Starch/SnO2 Nanocomposite for Efficient Adsorption of Toxic Hg2+ Metal Ion, Chem. Eng. J., 300:306-316 (2016).
[56] Jawad A.H., Ismail K., Ishak M.A.M., Wilson L.D., Conversion of Malaysian Low-Rank Coal to Mesoporous Activated Carbon: Structure Characterization and Adsorption Properties, Chin. J. Chem. Eng., 27(7): 1716-1727 (2019).