Review of CO2 Capture Using Absorption and Adsorption Technologies

Document Type : Review Article

Authors

School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, I.R. IRAN

Abstract

In this work, we tried to explore the review of CO2 capture using absorption and adsorption technologies. For this purpose, also, besides the literature review investigates the effect of some operational parameters such as temperature, pressure, amine concentration, solution flow rate, and the adsorbent loading on the CO2 removal efficiency and CO2 capture capacity. The results demonstrated that the flow rate of liquid and concentration of amine has a positive effect on the removal efficiency and the CO2 flow rate has a negative effect. The results in the adsorption part indicated the pressure had a positive effect on the equilibrium adsorption capacity and the adsorbent loading and temperature had a negative effect. Moreover, the absorption of CO2 into three ZrO2, TiO2, and ZnO nanofluids at Pz and DEA solution was investigated. The results represented that the loading of nanoparticles and speed of the stirrer have an optimum value for CO2 removal efficiency. The optimum value was 0.05 wt%, 0.05 wt%, and 0.1 wt%, for ZrO2, TiO2, and ZnO nanoparticles, respectively. Furthermore, the CO2 removal efficiency increased first with an increase of the stirring speed up to 200 rpm, and then begins to decrease as the stirrer speed increased above 200 rpm.

Keywords

Main Subjects


[1] Kazemi S., Ghaemi A., Tahvildari K., Experimental and Thermodynamic Modeling of CO2 Absorption into Aqueous DEA and DEA+ Pz blended Solutions, Iran. J. Chem. Chem. Eng. (IJCCE), 40(4): 1162-1178 (2020).
[2] Mashhadimoslem H., Vafaeinia M., Safarzadeh M., Ghaemi A., Fathalian F., Maleki A., Development of Predictive Models for Activated Carbon Synthesis from Different Biomass for CO2 Adsorption Using Artificial Neural Networks, Industrial & Engineering Chemistry Research, 60(38): 13950-13966 (2021).
[3] Noorpoor A., Avishan M., Nazari Kudahi S., Experimental and Theoretical Investigation of CO2 Adsorption on Amine-modified Pumice as an Affordable Adsorbent, Iran. J. Chem. Chem. Eng. (IJCCE), 40 (4): 1148-116  1 (2021).
[4] Zouaoui E.H., Djamel N., Wan Ab Karim Ghani W.A., Samira A., High Pressure CO2 Adsorption onto NaX Zeolite: Effect of Li+, K+, Mg2+ and Zn2+ and Equilibrium Isotherms Study, Iran. J. Chem. Chem. Eng. (IJCCE), 40(4): 1195-1215 (2021).
[6] Saeidi M., Ghaemi A., Tahvildari K., CO2 Capture Exploration on Potassium Hydroxide Employing Response Surface Methodology, Isotherm and Kinetic Models, Iran. J. Chem. Chem. Eng. (IJCCE), 39(5): 255-267 (2020).
[7] Jahangiri A., Heidari Semiromi A., Investigation of CO2 Solubility in Blends of AMP and HMDA Solvents: Thermodynamic Modeling Based on the Deshmukh-Mather Model, Iran. J. Chem. Chem. Eng. (IJCCE), 40(1): 231-240 (2021).
[8] Ghaemi A., Jafari Z., Etemad E., Prediction of CO2 Mass Transfer Flux in Aqueous Amine Solutions Using Artificial Neural Networks, Iran. J. Chem. Chem. Eng. (IJCCE), 39(4): 269-280 (2020).
[9] Kazemi H., Shahhosseini S., Amiri M., Optimization of CO2 Capture Process Using Dry Sodium-Based Sorbents, Iran. J. Chem. Chem. Eng. (IJCCE), 40(4): 1179-1194 (2021).
[10] Ramezanipour Penchah H., Ghaemi A., Jafari F., Piperazine-Modified Activated Carbon as a Novel Adsorbent for CO2 Capture: Modeling and Characterization, Environmental Science and Pollution Research, 21: 1-10 (2021).
[11] Mesbah M., Soltanali S., Momeni M., Pouresmaeil S., Rahaei N., Amiri Z., Effective Modeling Methods to Accurately Predict the Miscibility of CO2 in Ionic Liquids, Chemical Engineering Research and Design, 154:  262-272 (2020).
[12] Koohestanian E., Sadeghi J., Mohebbi-Kalhori D., Shahraki F., Samimi A., New Process Flowsheet for CO2 Compression and Purification Unit; Dynamic Investigation and Control, Iran. J. Chem. Chem. Eng. (IJCCE), 40(2): 593-604 (2021).
[13] Baseri H., Haghighiasl A., High Pressure Phase Equilibrium of (Solvent+ Salt+ CO2) Systems by the Extended Peng-Robinson Equation of State, Iran. J. Chem. Chem. Eng. (IJCCE), 27(4): 97-105 (2008).
[14] Koohestanian E., et al., New Process Flowsheet for CO2 Compression and Purification Unit; Dynamic Investigation and Control, Iran. J. Chem. Chem. Eng. (IJCCE), 40(2): 593-604 (2021).
[15] Alinezhad H., Fakhimi Abarghouei M., Tajbakhsh M., Niknam K., Application of MEA, TEPA and Morpholine Grafted NaY Zeolite as CO2 Capture, Iran. J. Chem. Chem. Eng. (IJCCE), 40(2): 581-592 (2021).
[16] Omrani H., Naser I., Rafiezadeh M., Experimental and Numerical Study of CO2/CH4 Separation Using SAPO-34/PES Hollow Fiber Membrane, Iran. J. Chem. Chem. Eng. (IJCCE), 40(3): 841-852 (2021).
[17] Nazari Kudahi S., Noorpoor A., Mahmoodi N.M., Adsorption Performance Indicator for Power Plant CO2 Capture on Graphene Oxide/TiO2 Nanocomposite, Iran. J. Chem. Chem. Eng. (IJCCE), 38(3): 293-307 (2019).
[18] Rahbari-Sisakht M., Emadzadeh D., Fauzi Ismail A., Korminouri F., Matsuura T., Mayahi A.R., Influence of Air-Gap Length on CO2 Stripping from Diethanolamine Solution and Water Performance of Surface Modified PVDF Hollow Fiber Membrane Contactor, Iran. J. Chem. Chem. Eng. (IJCCE), 37(4): 117-129 (2018).
[19] Abdollahi S., Zarei Z., Reduction of CO2 Emission and Production Costs by Using Pozzolans in Lamerd Cement Factory, Iran. J. Chem. Chem. Eng. (IJCCE), 37(1): 223-230 (2018).
[20] Mirzaeian M., Peter J., Thermodynamical Studies of Irreversible Sorption of CO2 by Wyodak Coal,  Iran. J. Chem. Chem. Eng. (IJCCE), 27(2): 59-68 (2008).
[21] Heidari Semiromi A., Jahangiri A., Investigation of CO2 Solubility in Blends of AMP and HMDA Solvents: Thermodynamic Modeling Based on the Deshmukh-Mather Model, Iran. J. Chem. Chem. Eng. (IJCCE), 40(1): 231-240 (2021).
[22] Kibar M.E., Akin A.N., Optimization of Carbon Dioxide Capture Process Parameters in Sodium Metaborate Solution, Iran. J. Chem. Chem. Eng. (IJCCE),  40(5): 1554-1565 (2020).
[23] Ghaemi A., Shahhosseini S., Ghannadi Maragheh M., Experimental Investigation of Reactive Absorption of Ammonia and Carbon Dioxide by Carbonated Ammonia Solution, Iran. J. Chem. Chem. Eng. (IJCCE), 30(2): 43-50 (2011).
[24] Momeni M., Mesbah M., Soroush E., Shahsavari S., Hybrid Membranes for Carbon Capture, Sustainable Agriculture Review 38s, 2: 85-120 (2020).
[25] Rashidi N.A., Yusup S., An Overview of Activated Carbons Utilization for the Post-Combustion Carbon Dioxide Capture, Journal of CO2 Utilization, 13: 1-16 (2016).
[26] Saeidi M., Ghaemi A., Tahvildari K., Derakhshi P.,  Exploiting Response Surface Methodology (RSM) as a Novel Approach for the Optimization of Carbon Dioxide Adsorption by Dry Sodium Hydroxide, Journal of The Chinese Chemical Society, 65(12): 1465-1475 (2018).
[27] Xu X., Song C., Andresen J.M., Miller B.G., Scaroni A.W., Novel Polyethylenimine-modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 Capture, Energy & Fuels, 16(6): 1463-1469 (2002).
[28] Jadhav P.D., Chatti R.V., Biniwale R.B., Labhsetwar N.K., Devotta S., Rayalu S.S., Monoethanol Amine Modified Zeolite 13X for CO2 Adsorption at Different Temperatures, Energy & Fuels, 21(6): 3555-3559 (2007).
[29] Karbalaei Mohammad N., Ghaemi A., Tahvildari K., Sharif A.A., Experimental Investigation and Modeling of CO2 Adsorption Using Modified Activated Carbon, Iran. J. Chem. Chem. Eng. (IJCCE), 39(1): 177-192 (2020).
[30] Siriwardane R.V., Shen M.S., Fisher E.P., Poston J.A., Adsorption of CO2 on Molecular Sieves and Activated Carbon, Energy & Fuels, 15(2): 279-284 (2001).
[31] Derylo-Marczewska A., Blachnio M., Marczewski A.W., Swiatkowski A., Buczek B., Adsorption of Chlorophenoxy Pesticides on Activated Carbon with Gradually Removed External Particle Layers, Chemical Engineering Journal, 308: 408-418 (2017).
[32] Tan Y.L., Islam M.A., Asif M., Hameed B.H., Adsorption of Carbon Dioxide by Sodium Hydroxide-Modified Granular Coconut Shell Activated Carbon in a Fixed Bed, Energy, 77: 926-931 (2014).
[33] Siriwardane R.V., Robinson C., Shen M., Simonyi T.,  Novel Regenerable Sodium-Based Sorbents for CO2 Capture at Warm Gas Temperatures, Energy & Fuels, 21(4): 2088-2097 (2007).
[34] Ghosh A., Subrahmanyam K.S., Krishna K.S., Datta S., Govindaraj A., Pati SK, Rao C.N., Uptake of H2 and CO2 by Graphene, The Journal of Physical Chemistry C, 112(40): 15704-15707 (2008).
[35] Lee J.B., Ryu C.K.., Baek JI., Lee J.H., Eom T.H., Kim S.H., Sodium-Based Dry Regenerable Sorbent for Carbon Dioxide Capture from Power Plant Flue Gas, Industrial & Engineering Chemistry Research, 47(13): 4465-4472 (2008).
[36] Kazemi H., Shahhosseini S., Amiri M., Optimization of CO2 Capture Process Using Dry Sodium-Based Sorbents, Iran. J. Chem. Chem. Eng. (IJCCE), 40(3): 1179-1194 (2021).
[37] Alinezhad H., Fakhimi Abarghouei M., Tajbakhsh M., Niknam K., Application of MEA, TEPA and Morpholine Grafted NaY Zeolite as CO2 Capture, Iran. J. Chem. Chem. Eng. (IJCCE), 40(2): 581-592 (2021).
[39] Khajeh Amiri M., Ghaemi A., Arjomandi H., Experimental, Kinetics and Isotherm Modeling of Carbon Dioxide Adsorption with 13X Zeolite in a Fixed Bed Column, Iranian Journal of Chemical Engineering (IJChE), 16(1): 54-64 (2019).
[40] Zeini Isfahani A., Roberts M.W., Carley A.F.,
Read S., The Reactive Chemisorption of Carbon Dioxide at Mg (100) Surface, Iran. J. Chem. Chem. Eng. (IJCCE), 13(1): 25-29 (1994).
[41] Ashraftalesh S.S., Fatemi S., Hashemi S.J., Emrani P., Comparative Study of Carbon Dioxide and Methane Adsorption by Synthesized Fine Particles of SAPO-34 Molecular Sieve, Iran. J. Chem. Chem. Eng. (IJCCE), 29(3): 37-45 (2010).
[42] Ramezanipour Penchah H., Najafi P., Ghaemi A., Ghanadzadeh Gilani H.., Characterization of Hypercrosslinked Polymer Adsorbent Based on Carbazole to Achieve Higher CO2 Capture, Environmental Progress & Sustainable Energy, 40(4): e13586 (2021).
[43] Ghaemi A., Hemmati A., Mashhadimoslem H., Non-Equilibrium Modeling Of CO2 Reactive-Absorption Process Using Sodium Hydroxide–Ammonia–Water Solution in a Packed Bed Column, Journal of the Iranian Chemical Society, 18: 2303-2314 (2021).
[44] Rahmandoost E., Roozbehani B., Maddahi M.H., Experimental Studies of CO2 Capturing from the Flue Gases, Iranian Journal of Oil & Gas Science and Technology, 3(4): 1-15 (2014).
[45] Özcan M.M., Ören D., Comparative of Physico-Chemical Properties of Wheat Germ Oil Extracted with Cold Press and Supercritical CO2 Extraction, Iran. J. Chem. Chem. Eng. (IJCCE), 38(6): 167-174 (2019).
[46] Afandiyeva L., Abbasov V., Aliyeva L., Ahmadbayova S., Azizbeyli E., El-Lateef Ahmed H.M., Investigation of Organic Complexes of Imidazolines Based on Synthetic Oxy-and Petroleum Acids as Corrosion Inhibitors, Iran. J. Chem. Chem. Eng. (IJCCE), 37(3): 73-79 (2018).
 [47] Ahmad R., Saleem I., Clean Hydrogen Energy and Electric Power Production with CO2 Capturing by Using Coal Gasification, Iran. J. Chem. Chem. Eng. (IJCCE), 35(4): 143-152 (2016).
[48] Saeidi M., Ghaemi A., Tahvildari K., CO2 Capture Exploration on Potassium Hydroxide Employing Response Surface Methodology, Isotherm and Kinetic Models, Iran. J. Chem. Chem. Eng. (IJCCE), 39(5):  255-267 (2020).
[49] Ghaemi A., Jafari Z., Etemad E., Prediction of CO2 Mass Transfer Flux in Aqueous Amine Solutions Using Artificial Neural Networks, Iran. J. Chem. Chem. Eng. (IJCCE), 39(4): 269-280 (2020).
[50] Karbalaei Mohammad N., Ghaemi A., Tahvildari K., Sharif A.A., Experimental Investigation and Modeling of CO2 Adsorption Using Modified Activated Carbon, Iran. J. Chem. Chem. Eng. (IJCCE), 39(1): 177-192 (2020).
[51] Kohl A., Reisenfeld F., “Sulfur Dioxide Removal, Gas Purification”,  Mc-Graw Hill, New York (1985).
[52] Jahanmiri A.H., Eghbalpoor A., Gas Absorption with Chemical Reaction in Turbulent Flow, Iran. J. Chem. Chem. Eng. (IJCCE), 12(2): 85-90 (1993).
[53] Kazemi S., Ghaemi A., Tahvildari K., Chemical Absorption of Carbon Dioxide into Aqueous Piperazine Solutions Using a Stirred Reactor, Iran. J. Chem. Chem. Eng. (IJCCE), 39(4): 253-267 (2020).
[54] Najafi P., Ramezanipour Penchah H., Ghaemi A., Improving CO2/N2 and CO2/H2 Selectivity of Hypercrosslinked Carbazole-Based Polymeric Adsorbent for Environmental Protection, Journal of Chemical and Petroleum Engineering, 54(2): 311-321 (2020).
[55] Ghaemi A., Shahhosseini S., Maragheh M.G., Nonequilibrium Dynamic Modeling of Carbon Dioxide Absorption by Partially Carbonated Ammonia Solutions, Chemical Engineering Journal, 149(1-3): 110-117 (2009).
[56] Norouzbahari S., Shahhosseini S., Ghaemi A., Modeling of CO2 Loading in Aqueous Solutions of Piperazine: Application of an Enhanced Artificial Neural Network Algorithm, Journal of Natural Gas Science and Engineering, 24: 18-25 (2015).
[58] Norouzbahari S., Shahhosseini S., Ghaemi A., CO2 Chemical Absorption into Aqueous Solutions of Piperazine: Modeling of Kinetics and Mass Transfer Rate, J. Nat. Gas Sci. Eng., 26: 1059-1067 (2015).
[59] Yeh J.T., Pennline H.W., Resnik K.P., Study of CO2 Absorption and Desorption in a Packed Column, Energy & Fuels, 15(2): 274-278 (2001).
[60] Ghaemi A., Shahhosseini S., Nonequilibrium Dynamic Modeling of Hydrogen Sulfide Absorption Using Diglycolamine Solution, Iran. J. Chem. Chem. Eng. (IJCCE), 1: 112-122(2013).
[61] Heydarifard M., Pashaei H., Ghaemi A., Nasiri M., Reactive Absorption of CO2 Into Piperazine Aqueous Solution in a Stirrer Bubble Column: Modeling and Experimental, Int. J. Greenhouse Gas Control, 79: 91-116 (2018).
[62] Askari S., Halladj R., Nikazar M., Study and Kinetic Modeling of Direct Sulfation of Iranian Limestones by Sulfur Dioxide at High CO2 Partial Pressure, Iran. J. Chem. Chem. Eng. (IJCCE), 27(3): 45-50 (2008).
[63] Pahlevan Z.H., Mohseni A.E., Estimation of UNIQUAC-NRF Model Parameters for NH3-CO2-H2O System, Iran. J. Chem. Chem. Eng. (IJCCE), 24(1): 21-26 (2005).
[64] Stegeman D., Knop P.A., Wijnands A.J, Westerterp K.R., Interfacial Area and Gas Holdup in a Bubble Column Reactor at Elevated Pressures, Industrial & Engineering Chemistry Research, 35(11): 3842-3847 (1996).
[66] Pashaei H., Ghaemi A., Nasiri M., Experimental Investigation of CO2 Removal Using Piperazine Solution in a Stirrer Bubble Column, Int. J. Greenhouse Gas Control, 63: 226-240 (2017).
[67] Jung K.S., Keener T.C., Green V.C., Khang S.J., CO2 Absorption Study in a Bubble Column Reactor with Mg (OH)2, International Journal of Environmental Technology and Management, 4(1-2): 116-136 (2004).
[68] Terasaka K., Suyama Y.., Nakagawa K, Kato M., Essaki K., Absorption and Stripping of CO2 with a Molten Salt Slurry in a Bubble Column at High Temperature, Chemical Engineering & Technology, 29(9): 1118-1121 (2006).
[69] Navaza J.M., Gómez-Díaz D., La Rubia M.D., Removal Process of CO2 Using MDEA Aqueous Solutions in a Bubble Column Reactor, Chemical Engineering Journal, 146(2): 184-188 (2009).
[70] La Rubia M.D., García-Abuín A., Gómez-Díaz D., Navaza J.M., Interfacial Area and Mass Transfer in Carbon Dioxide Absorption in TEA Aqueous Solutions in a Bubble Column Reactor, Chemical Engineering and Processing: Process Intensification, 49(8): 852-858 (2010).
[71] Mageed A.K., Effect of Solid Loading on Carbon Dioxide Absorption in Bubble Column, Al-Khwarizmi Engineering Journal, 7: 30-38 (2011).
[72] Blanco A., García-Abuín A., Gómez-Díaz D., Navaza JM., Hydrodynamic and Absorption Studies of Carbon Dioxide Absorption in Aqueous Amide Solutions Using a Bubble Column Contactor, Brazilian Journal of Chemical Engineering, 30(4): 801-809 (2013).
[73] Jia X., Hu W., Yuan X., Yu K., Influence of the Addition of Ethanol to the Gas Phase on CO2 Absorption in a Bubble Column, Industrial & Engineering Chemistry Research, 53(24): 10216-10224 (2014).
[74] Chen P.C., Liao C.-C., A Study on CO2 Absorption in Bubble Column Using DEEA/EEA Mixed Solvent, International Journal of Engineering Practical Research, 3(4): 118-129 (2014).
[75] Wang T., Yu W., Liu F., Fang M., Farooq M., Luo Z., Enhanced CO2 Absorption and Desorption by Monoethanolamine (MEA)-Based Nanoparticle Suspensions, Industrial & Engineering Chemistry Research, 55(28): 7830-7838 (2016).
[78] Etemad E., Ghaemi A., Shirvani M., Prediction of CO2 Mass Transfer Flux in Amine Solutions Using Neural Networks, Iran. J. Chem. Chem. Eng. (IJCCE), 39(4): 269-280 (2015).
[80] Amiri M., Shahhosseini S., Optimization of CO2 Capture from Simulated Flue Gas Using K2CO3/Al2O3 in a Micro Fluidized Bed Reactor, Energy Fuels, 32(7): 7978-7990 (2018).
[82] Taheri F.S., Ghaemi A., Maleki A., Shahhosseini S., High CO2 Adsorption on Amine-Functionalized Improved Mesoporous Silica Nanotube as an Eco-Friendly Nanocomposite, Energy & Fuels, 33(6): 5384-5397 (2019).
[83] Pashaei H., Zarandi M.N., Ghaemi A., Experimental Study and Modeling of CO2 Absorption into Diethanolamine Solutions Using Stirrer Bubble Column, Chem. Eng. Res. Des., 121: 32-43 (2017).
[84] Pashaei H., Ghaemi A., Nasiri M., Heydarifard M., Experimental Investigation of the Effect of Nano Heavy Metal Oxide Particles in Piperazine Solution on CO2 Absorption Using a Stirrer Bubble Column, Energy & Fuels, 32(2): 2037-2052 (2018).
[85] Pashaei H., Ghaemi A., Nasiri M., Karami B., Experimental Modeling and Optimization of CO2 Absorption Into Piperazine Solutions Using RSM-CCD Methodology, ACS Omega, 5(15): 8432-8448 (2020).
[86] Ramezanipour Penchah H., Ghaemi A., Ganadzadeh Gilani H., Benzene-Based Hyper-Cross-Linked Polymer with Enhanced Adsorption Capacity for CO2 Capture, Energy & Fuels, 33(12): 12578-12586 (2019).
[87] Pashaei H., Ghaemi A., Behroozi A.H., Mashhadimoslem H., Hydrodynamic and Mass Transfer Parameters for CO2 Absorption into Amine Solutions and its Blend with Nano Heavy Metal Oxides Using a Bubble Column, Separation Science and Technology, 37: 1-16 (2021).
[88] Etemad E., Ghaemi A., Shirvani M., Rigorous Correlation for CO2 Mass Transfer Flux in Reactive Absorption Processes, International Journal of Greenhouse Gas Control, 42: 288-295 (2015).
[89] Ghaemi A., Torab-Mostaedi M., Maragheh M.G., Shahhosseini S., Kinetics and Absorption Rate of CO2 into Partially Carbonated Ammonia Solutions, Chemical Engineering Communications, 198(10): 1169-1181 (2011).
[90] Khajeh M., Ghaemi A., Exploiting Response Surface Methodology for Experimental Modeling and Optimization of CO2 Adsorption onto NaOH-Modified Nanoclay Montmorillonite, Journal of Environmental Chemical Engineering, 8(2): 103663 (2020).
[91] Fashi F., Ghaemi A., Moradi P., Piperazine‐Modified Activated Alumina as a Novel Promising Candidate for CO2 Capture: Experimental and Modeling, Greenhouse Gases: Science and Technology, 9(1): 37-51 (2019).
[92] Mirzaei F., Ghaemi A., An Experimental Correlation for Mass Transfer Flux of CO2 Reactive Absorption into Aqueous MEA‐PZ Blended Solution, Asia‐Pacific Journal of Chemical Engineering, 13(6):  e2250 (2018).
[93] Ghaemi A., Hashemzadeh V., Shahhosseini S., An Experimental Investigation of Reactive Absorption of Carbon Dioxide into an Aqueous NH3/H2O/NaOH Solution, Iranian Journal of Oil and Gas Science and Technology, 6(3): 55-67 (2017).
[94] Niknafs H., Ghaemi A., Shahhosseini S., Dynamic Heat and Mass Transfer Modeling and Control in Carbon Dioxide Reactive Absorption Process, Heat and Mass Transfer, 51(8): 1131-1140 (2015).
[95] Mohseni A., Ghaemi A., Experimental Modeling of CO2 Absorption into Monoethanolamine Amine Using Response Surface Methodology, Iranian Chemical Engineering Journal, 9: 43-54 (2020).
[96] Heydarifard M., Ghaemi A., Shirvani M., Numerical Simulation of CO2 Chemical Absorption in a Gas-Liquid Bubble Column Using the Space-Time CESE Method, Journal of Environmental Chemical Engineering, 8(5): 104111 (2020).
[97] Mirzaei F., Ghaemi A., Mass Transfer Modeling of CO2 Absorption into Blended Aqueous MDEA–PZ Solution, Iranian Journal of Oil and Gas Science and Technology, 9(3): 77-101 (2020).
[98] Rastegar Z., Ghaemi A., CO2 Absorption into Potassium Hydroxide Aqueous Solution: Experimental and Modeling, Heat and Mass Transfer, 9: 1-17 (2021).
[99] Akbarzad N., Ghaemi A., Rezakazemi M., Optimization and Modeling of Carbon Dioxide Absorption into Blended Sulfolane and Piperazine Aqueous Solution in a Stirrer Reactor, International Journal of Environmental Science and Technology, 2: 1-22 (2021).
[100] Austgen D.M., Rochelle G.T., Peng X., Chen C.C., Model of Vapor-Liquid Equilibria for Aqueous Acid Gas-Alkanolamine Systems Using the Electrolyte-NRTL Equation, Industrial & Engineering Chemistry Research, 28(7): 1060-1073 (1989).
[101] Glasscock D.A., Critchfield J.E., Rochelle G.T., CO2 Absorption/Desorption in Mixtures of Methyldiethanolamine with Monoethanolamine or Diethanolamine, Chemical Engineering Science, 46(11): 2829-2845 (1991).
[102] Saeednia L., Hashemipour H., Afzali D., Study on Mass Transfer Enhancement in a Gas-Liquid System Using Nanomaterials, Transport Phenomena in Nano and Micro Scales, 3(1): 46-53 (2015).
[103] Ghaemi A., Mashhadimoslem H., Zohourian Izadpanah P., NiO and MgO/Activated Carbon as an Efficient CO2 Adsorbent: Characterization, Modeling, and Optimization, International Journal of Environmental Science and Technology, 37: 1-20 (2021).
[104] Figueroa J.D., Fout T., Plasynski S., McIlvried H., Srivastava R.D., Advances in CO2 Capture technology—the US Department of Energy's Carbon Sequestration Program, International Journal of Greenhouse Gas Control, 2(1): 9-20 (2008).
[105] Ahmad A.L., Sunarti A.R., Lee K.T., Fernando W.J., CO2 Removal Using Membrane Gas Absorption, International Journal of Greenhouse Gas Control, 4(3): 495-498 (2010).
[106] Oorpoor A., Avishan M., Nazari Kudahi S., Experimental and Theoretical Investigation of CO2 Adsorption on Amine-Modified Pumice as an Affordable Adsorbent, Iran. J. Chem. Chem. Eng. (IJCCE), 40(4): 1148-1161 (2021).
[107] Haghtalab A., Eghbali H., Shojaeian A., Experiment and Modeling Solubility of CO2 in Aqueous Solutions of diisopropanolamine+ 2-amino-2-methyl-1-Propanol+ Piperazine at High Pressures, The Journal of Chemical Thermodynamics, 71: 71-83 (2014).
[108] Kim J.-K., Jung J.Y., Kang Y.T., The Effect of Nano-Particles on the Bubble Absorption Performance in a Binary Nanofluid, International Journal of Refrigeration, 29(1): 22-29 (2006).
[109] Chol S., Enhancing Thermal Conductivity of Fluids with Nanoparticles, ASME-Publications-Fed, 231: 99-106 (1995).
[110] Saidur R., Leong K., Mohammad H., A Review on Applications and Challenges of Nanofluids, Renewable and Sustainable Energy Reviews, 15(3): 1646-1668 (2011).
[111] Krishnamurthy S., Bhattacharya P., Phelan P.E., Prasher R.S., Enhanced Mass Transport in Nanofluids, Nano Letters, 6(3): 419-423 (2006).
[112] Pineda I.T., Lee J.W., Jung I., Kang Y.T., CO2 Absorption Enhancement by Methanol-Based Al2O3 and SiO2 Nanofluids in a Tray, Column Absorber, International Journal of Refrigeration, 35(5): 1402-1409 (2012).
[113] Pineda I.T., Choi C.K., Kang Y.T., CO2 Gas Absorption by CH3 oH Based Nanofluids in an Annular Contactor at Low Rotational Speeds, International Journal of Greenhouse Gas Control, 23: 105-112 (2014).
[114] Khajeh M., Ghaemi A., Strontium Hydroxide-Modified Nanoclay Montmorillonite for CO2 Capture: Response Surface Methodology and Adsorption Mechanism, International Journal of Environmental Analytical Chemistry, 37: 1-26 (2021).
[115] Lee J.W., Jung J.Y., Lee S.G., Kang Y.T., CO2 Bubble Absorption Enhancement in Methanol-Based Nanofluids, International Journal of Refrigeration, 34(8): 1727-1733 (2011).
[116] Jung J.-Y., Lee J.W., Kang Y.T., CO2 Absorption Characteristics of Nanoparticle Suspensions in Methanol, Journal of Mechanical Science and Technology, 26(8): 2285-2290 (2012).
[117] Pang C., et al., Mass Transfer Enhancement by Binary Nanofluids (NH 3/H2O+ Ag nanoparticles) for Bubble Absorption Process, International Journal of Refrigeration, 35(8): 2240-2247 (2012).
[118] Ma X., Su F., Chen J., Bai T., Han Z., Enhancement of Bubble Absorption Process Using a CNTs-ammonia Binary Nanofluid, International Communications in Heat and Mass Transfer, 36(7): 657-660 (2009).
[119] Lee J.K., Koo J., Hong H., Kang Y.T., The Effects of Nanoparticles on Absorption Heat and Mass Transfer Performance in NH3/H2O Binary Nanofluids, International Journal of Refrigeration, 33(2): 269-275 (2010).
[120] Sumin L.U.., Min XI., Yan S.U., Xiangjun D.O., Experimental and Theoretical Studies Of CO2 Absorption Enhancement by Nano-Al2O3 and Carbon Nanotube Particles, Chinese Journal of Chemical Engineering, 21(9): 983-990 (2013).
[121] Samadi Z., Haghshenasfard M., Moheb A., CO2 Absorption Using Nanofluids in a Wetted‐Wall Column with External Magnetic Field, Chemical Engineering & Technology, 37(3): 462-470 (2014).
[122] Salimi J., Haghshenasfard M., Etemad S.G., CO2 Absorption in Nanofluids in a Randomly Packed Column Equipped with Magnetic Field, Heat and Mass Transfer, 51(5): 621-629 (2015).
[123] Kim W.G., Kang H.U., Jung K.M., Kim S.H., Synthesis of Silica Nanofluid and Application to CO2 Absorption, Separation Science and Technology, 43(11-12): 3036-3055 (2008).
[124] Komati S., Suresh A.K., CO2 Absorption into Amine Solutions: a Novel Strategy for Intensification Based on the Addition of Ferrofluids, Journal of Chemical Technology and Biotechnology, 83(8): 1094-1100 (2008).
[125] Kim J.-K., Jung J.Y., Kang Y.T., Absorption Performance Enhancement by Nano-Particles and Chemical Surfactants in Binary Nanofluids, International Journal of Refrigeration, 30(1): 50-57v (2007).
[126] Jiang J., Zhao B., Cao M., Wang S., Zhuo Y., Chemical Absorption Kinetics in MEA Solution with Nano-Particles, Energy Procedia, 37: 518-524 (2013).
[127] Jiang J., Zhao B., Zhuo Y., Wang S., Experimental Study of CO2 Absorption in Aqueous MEA and MDEA Solutions Enhanced by Nanoparticles, International Journal of Greenhouse Gas Control, 29: 135-141 (2014).
[128] Lee J.W., Kang Y.T., CO2 Absorption Enhancement by Al2O3 Nanoparticles in NaCl Aqueous Solution, Energy, 53: 206-211 (2013).
[129] Jung J.-Y., Lee J.W., Kang Y.T., CO2 Absorption Characteristics of Nanoparticle Suspensions in Methanol, Journal of Mechanical Science and Technology, 26(8): 2285-2290 (2012).
[130] Haghtalab A., Mohammadi M., Fakhroueian Z., Absorption and Solubility Measurement of CO2 in Water-Based ZnO and SiO2 Nanofluids, Fluid Phase Equilibria, 392: 33-42 (2015).
[132] Min K., Choi W., Kim C., Choi M., Oxidation-Stable Amine-Containing Adsorbents for Carbon Dioxide Capture, Nature Communications, 9(1): 1-7 (2018).
[133] Khoshraftar Z., Ghaemi A., Mohseni Sigaroodi A.H., The Effect of Solid Adsorbents in Triethanolamine (TEA) Solution for Enhanced CO2 Absorption Rate, Research on Chemical Intermediates, 47(10):  4349-4368 (2021).
[134] Khan A.A., Halder G., Saha A., Experimental Investigation on Efficient Carbon Dioxide Capture Using Piperazine (PZ) Activated Aqueous Methyldiethanolamine (MDEA) Solution in a Packed Column, International Journal of Greenhouse Gas Control, 64: 163-173 (2017).
[135] Najafi P., Penchah H.R., Ghaemi A., Synthesis and Characterization of Benzyl Chloride-Based Hypercrosslinked Polymers and its Amine-Modification as an Adsorbent for CO2 Capture, Environmental Technology & Innovation, 23: 101746 (2021).
[136] Naeem S., Shahhosseini S., Ghaemi A., Simulation Of CO2 Capture Using Sodium Hydroxide Solid Sorbent in a Fluidized Bed Reactor by a Multi-Layer Perceptron Neural Network, Journal of Natural Gas Science and Engineering, 31: 305-312 (2016).
[137] Naeem S., Ghaemi A., Shahhosseini S., Experimental Investigation of CO2 Capture Using Sodium Hydroxide Particles in a Fluidized Bed, Korean Journal of Chemical Engineering, 33(4): 1278-1285 (2016).
[138] Mohammad N.K., Ghaemi A., Tahvildari K., Hydroxide Modified Activated Alumina as an Adsorbent for CO2 Adsorption: Experimental and Modeling, International Journal of Greenhouse Gas Control, 88: 24-37 (2019).
[139] Nikulshina V., Ayesa N., Galvez M.E., Steinfeld A., Feasibility of Na-based Thermochemical Cycles for the Capture of CO2 from air—Thermodynamic and Thermogravimetric Analyses, Chemical Engineering Journal, 140(1-3): 62-70 (2008).
[140] Behroozi, A.H., Akbarzad N., Ghaemi A., CO2 Reactive Absorption into an Aqueous Blended MDEA and TMS Solution: Experimental and Modeling, International Journal of Environmental Research, 14: 347-363 (2020).