Simulation and Exergy and Exergoeconomic Analysis of Associated Gas to Liquid Recovery Plant (Case Study: 4 and 5 Phases of South Pars)

Document Type : Research Article

Authors

1 Department of Energy Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), Tehran, I.R. IRAN

2 Department of energy engineering and physics, Amirkabir university of technology (Tehran polytechnic), 424 Hafez Avenue, PO. Box 15875-4413, Tehran, Iran

Abstract

In the last one hundred years, the increase in the use of fossil fuels in various industries, including refineries, petrochemicals, industrial complexes, etc., to achieve more production, has led to an increase in various pollutants in the world and environmental concerns, various economic costs, and health costs. Imposed on human beings. One of the most important sources of environmental pollution is industrial fluoride gases. According to global statistics, Iran is known as the third country to burn these gases. Reducing the emissions of these gases is one of the great goals of the international community. It seems necessary to study various methods such as converting gas to liquid to recover Flare gas. This research has simulated a gas-to-liquid conversion unit using the Flare gas output data of the south pars natural gas processing plant in Aspen Hysys V11 software. This unit is then evaluated and optimized by the exergy analysis method. The simulation output shows that when Flare gas is used to liquid the unit’s raw material, 1549 barrels of gas to liquid products per day will be obtained from this unit. Investigation of this case shows that one of the appropriate solutions to recover Flare gas can be to create a gas to the liquid conversion unit with energy and exergy efficiency of 65% and 69%.

Keywords

Main Subjects


[1] Bejan A., Tsatsaronis G., Moran M., Thermal Design and Optimization, John Wiley & Sons, Inc. (1996).
[2] Elliot D., Huang S., Chen J.J., Lee R.J., Yao J., Zhang Y., Benefits of Integrating NGL Extraction and LNG liquefaction Technology, AIChE Journal., (2005).
[3] Ahmadi N., Rezazadeh S., Dadvand A., Mirzaee I., Study of the Effect of Gas Channels Geometry on the Performance of Polymer Electrolyte Membrane Fuel Cell, Periodica Polytechnica Chemical Engineering, 62(1): 97-105 (2018).
[4] Ahmadi N., Rezazadeh S., Dadvand A., Mirzaee I., Modelling of Gas Transport in Proton Exchange Membrane Fuel Cells, Proceedings of the Institution of Civil Engineers-Energy, 170(4): 163-179 (2017).
[5] Ahmadi N., Kõrgesaar M., Analytical Approach to Investigate the Effect of Gas Channel Draft Angle on the Performance of PEMFC and Species Distribution, International Journal of Heat and Mass Transfer, 152:    -    (2020).
[6] Finn A.J., Developments in Natural Gas Liquefaction, Hydrocarbon Process, 47−59 (1999).
[7] Norouzi, N. The Pahlev Reliability Index: A Measurement for the Resilience of Power Generation Technologies Versus Climate Change, Nuclear Engineering and Technology (2020).
[10] Khajehpour H., Norouzi N., Shiva N., Folourdi R. M., Bahremani E. H., Exergy Analysis and Optimization of Natural Gas Liquids Recovery Unit, International Journal of Air-Conditioning and Refrigeration, 29: (2021).
[11] Norouzi N., Shiva N., Khajehpour H., Optimization of Energy Consumption in the Process of Dehumidification of Natural Gas, Biointerface Research in Applied Chemistry, 11: 14634–14639 (2021).
[13] Norouzi N., Khajehpour H., Simulation of Methane Gas Production Process from Animal Waste in a Discontinuous Bioreactor, Biointerface Research in Applied Chemistry, 11: 13850–13859 (2021).
[14] Norouzi N., Talebi S., Najafi P. Thermal-hydraulic Efficiency of a Modular Reactor Power Plant by Using the Second Law of Thermodynamic, Annals of Nuclear Energy, 151:   -   (2021).
[15] Khajehpour H., Norouzi N., Fani M., An Exergetic Model for the Ambient Air Temperature Impacts on the Combined Power Plants and its Management Using the Genetic Algorithm, International Journal of Air-Conditioning and Refrigeration, 29 (2021).
[16] Fani M., Norouzi N., Ramezani M., Energy, Exergy, and Exergoeconomic Analysis of Solar Thermal Power Plant Hybrid with Designed PCM Storage, International Journal of Air-Conditioning and Refrigeration, 28: (2020).
[17] Gallo W.L., Gallego A.G., Acevedo V.L., Dias R., Ortiz H.Y., Valente B.A., Exergy Analysis of the Compression Systems and its Prime Movers for a FPSO Unit, Journal of Natural Gas Science and Engineering, 44: 287–298 (2017).
[18] Arnaiz del Pozo C., Jiménez Álvaro Á., Rodríguez Martín J., López Paniagua I. Efficiency Evaluation of Closed and Open Cycle Pure Refrigerant Cascade Natural Gas Liquefaction Process Through Exergy Analysis, Journal of Natural Gas Science and Engineering, 89: (2021).
[19] Ghorbani B., Ebrahimi A., Rooholamini S., Ziabasharhagh M. Pinch and Exergy Evaluation of alina/Rankine/Gas/Steam Combined Power Cycles for Tri-Generation of Power, Cooling and Hot Water Using Liquefied Natural Gas Regasification, Energy Conversion and Management, 223: 113328 (2020).
[20] Zhang S., Jiang H., Jing J., Qin M., Chen D., Chen C., Comprehensive Comparison of Enhanced Recycle Split Vapour Processes for Ethane Recovery, Energy Reports, 6: 1819–1837 (2020).
 
[21] Mehrpooya M., Vatani A., Moosavian S. Optimum Pressure Distribution in Design of Cryogenic NGL Recovery Processes, Iran. J. Chem. Chem. Eng. (IJCCE), 31(3): 97-109 (2012).
[22] Ahmadi S., Nasr R. Comparative Study and Multi-Objective Optimization of Various Configurations in Natural Gas Liquefaction Process, Iran. J. Chem.  Chem. Eng. (IJCCE), 39(1): 313-336 (2020).
[23] Azari A., Shariaty-Niassar M., Alborzi M. Short-term and Medium-term Gas Demand Load Forecasting by Neural Networks, Iran. J. Chem. Chem. Eng. (IJCCE), 31(4): 77-84 (2012).
[24] Norouzi N., 4E Analysis and Design of a Combined Cycle with a Geothermal Condensing System in Iranian Moghan Diesel Power Plant, International Journal of Air-Conditioning and Refrigeration, 28: (2020).
[25] Garousi Farshi L., Mahmoudi S.M.S., Rosen M.A., Exergoeconomic Comparison of Double Effect and Combined Ejector-double Effect Absorption Refrigeration Systems, Applied Energy, 103: 700–711 (2013).
[26] Ghorbani B., Salehi G.R., Amidpour M., Hamedi M.H., Exergy and Exergoeconomic Evaluation of Gas Separation Process, Journal of Natural Gas Science and Engineering, 9: 86-93 (2012).
[27] Morosuk T., Tesch S., Hiemann A., Tsatsaronis G., Bin Omar N., Evaluation of the PRICO Liquefaction Process using Exergy-based Methods, Journal of Natural Gas Science and Engineering, 1-9 (2015).
[28] Siddiqui F.R., El-Shaarawi M.A.I., Said S.A.M, Exergoeconomic Analysis of a Solar Driven Hybrid Storage Absorption Refrigeration Cycle, Energy Conversion and Management, 80: 165-172 (2014).
[29] Vatani A., Mehrpooya M., Palizdar A., Energy and Exergy Analyses of Five Conventional Liquefied Natural Gas Processes, International Journal of Energy Research, 38: 1843-1863 (2014).
[30] Azizkhani A., Gandomkar A., A Novel Method for Application o Nanoparticles as Direct Asphaltene Inhibitors During Miscible CO2 Injection, Journal of Petroleum Science and Engineering, 185: (2020).
[31] Pellegrini L.A., De Guido G., Valentina V., Energy and Exergy Analysis of Acid Gas Removal Processes in the LNG Production Chain, Journal of Natural Gas Science and Engineering, 61: 303–319 (2019).
[32] Najibullah Khan N. B., Barifcani A., Tade M., Pareek V., A Case Study: Application of Energy and Exergy Analysis for Enhancing the Process Efficiency of a Three Stage Propane Pre-Cooling Cycle of the Cascade LNG Process, Journal of Natural Gas Science and Engineering, 29: 125–133 (2016).
[33] Ghorbani B., Salehi G.R., Ghaemmaleki H., Amidpour M., Hamedi M.H., Simulation and Optimization of Refrigeration Cycle in NGL Recovery Plants with Exergy-Pinch Analysis, Journal of Natural Gas Science and Engineering, 7: 35–43 (2012).
[34] Bidar B., Shahraki F. Energy and Exergo-Economic Assessments of Gas Turbine Based CHP Systems: A Case Study of SPGC Utility Plant, Iran. J. Chem. Chem. Eng. (IJCCE), 37(5): 209-223 (2018).
[36] Khoshrou I., Jafari Nasr M., Bakhtari K., Exergy Analysis of the Optimized MSFD Type of Brackish Water Desalination Process, Iran. J. Chem. Chem. Eng. (IJCCE), 36(6): 191-208 (2017).
[37] Norouzi N., 4E Analysis of a Fuel Cell and Gas Turbine Hybrid Energy System, Biointerface Research in Applied Chemistry, 11: 7568-7579 (2021).
[38] Zaresharif M., Vatani A., Ghasemian M., Evaluation of Different Flare Gas Recovery Alternatives with Exergy and Exergoeconomic Analyses, Arabian Journal for Science and Engineering: 1-20 (2021).
[39] Hajizadeh A., Mohamadi-Baghmolaei M., Azin R., Osfouri S., Heydari I., Technical and Economic Evaluation of Flare Gas Recovery in a Giant Gas Refinery, Chemical Engineering Research and Design, 131(1): 506-519 (2018).
[40] Sabbagh O., Fanaei M.A., Arjomand A., Optimal Design of a Novel NGL/LNG Integrated Scheme: Economic and Exergetic Evaluation, Journal of Thermal Analysis and Calorimetry, 18:1-6 (2020).
[41] Abdulrahman I., Máša V., Teng S.Y., Process Intensification in The Oil and Gas Industry: A Technological Framework, Chemical Engineering and Processing-Process Intensification, 2: 108208 (2020).
[42] Norouzi N., Talebi S., Fabi M., Khajehpour H., Heavy Oil Thermal Conversion and Refinement to the Green Petroleum: A Petrochemical Refinement Plant Using the Sustainable Formic Acid for the Process, Biointerface Research in Applied Chemistry, 10: 6088 - 6100 (2020).
[43] Norouzi N., Kalantari G., Talebi S., Combination of Renewable Energy in the Refinery, with Carbon Emissions Approach, Biointerface Research in Applied Chemistry, 10: 5780-5786 (2020).
[44] Khajehpour H., Norouzi N., Bashash Jafarabadi Z., Valizadeh G., Hemmati M., Energy, Exergy, and Exergoeconomic (3E) Analysis of Gas Liquefaction And Gas Associated Liquids Recovery Co-Process Based on the Mixed Fluid Cascade Refrigeration Systems, Iran. J. Chem. Chem. Eng. (IJCCE), 41(4): 1391-1402 (2022).
[47] Vessally E., Mohammadi S., Abdoli M., Hosseinian A., Ojaghloo P., Convenient and Robust Metal-Free Synthesis of Benzazole-2-Ones Through the Reaction of Aniline Derivatives and Sodium Cyanate in Aqueous Medium, Iran. J. Chem. Chem. Eng. (IJCCE), 39(5): 11-19 (2020).‏
[48] Gharibzadeh F., Vessally E., Edjlali L., Es'haghi M., Mohammadi R., A DFT Study on Sumanene, Corannulene and Nanosheet as the Anodes in Li−Ion Batteries, Iran. J. Chem. Chem. Eng. (IJCCE), 39(6): 51-62 (2020).
[50] Mohammad Alipour F., Babazadeh M., Vessally E., Hosseinian, A., Delir Kheirollahi Nezhad P., A Computational Study on the Some Small Graphene-Like Nanostructures as the Anodes in Na−Ion Batteries, Iran. J. Chem. Chem. Eng. (IJCCE), 40(3): 691-703 (2021). 
[51] Hashemzadeh B., Edjlali L., Delir Kheirollahi Nezhad P., Vessally E., A DFT Studies on a Potential Anode Compound for Li-Ion Batteries: Hexa-Cata-Hexabenzocoronene Nanographen, Chem. Rev. Lett., 4: 232-238 (2021).
[52] Vessally E., Farajzadeh P., Najafi E., Possible Sensing Ability of Boron Nitride Nanosheet and its Al– and Si–Doped Derivatives for Methimazole Drug by Computational Study, Iran. J. Chem. Chem. Eng. (IJCCE), 40 (4): 1001-1011 (2021).
[53] Majedi S., Sreerama L., Vessally E., Behmagham F., Metal-Free Regioselective Thiocyanation of (Hetero) Aromatic C-H Bonds using Ammonium Thiocyanate: An Overview, J. Chem. Lett., 1: 25-31 (2020).
[55] Salehi N., Vessally E., Edjlali L., Alkorta I., Eshaghi M., Nan@Tetracyanoethylene (n=1-4) systems: Sodium salt vs Sodium Electride, Chem. Rev. Lett., 3: 207-217 (2020).
[56] Soleimani-Amiri S., Asadbeigi N., Badragheh S., A Theoretical Approach to New Triplet and Quintet (nitrenoethynyl) alkylmethylenes,(nitrenoethynyl) alkylsilylenes,(nitrenoethynyl) alkylgermylenes, Iran. J. Chem. Chem. Eng. (IJCCE), 39(4): 39-52 (2020).
[57] Sreerama L., Vessally E., Behmagham F., Oxidative Lactamization of Amino Alcohols: An Overview, J. Chem. Lett., 1: 9-18 (2020).
[59] Vessally E., Musavi M., Poor Heravi M.R., A Density Functional Theory Study of Adsorption Ethionamide on the Surface of the Pristine, Si and Ga and Al-Doped Graphene, Iran. J. Chem. Chem. Eng. (IJCCE), 40(6): 1720-1736 (2021).
[62] Vessally E., Siadati S.A., Hosseinian A., Edjlali L., Selective Sensing of Ozone and the Chemically Active Gaseous Species of the Troposphere by Using the C20 Fullerene and Graphene Segment, Talanta, 162: 505-510 (2017).
[63] Rabipour S., Mahmood E.A., Afsharkhas M., Abbasi V., A Review on the Cannabinoids Impacts on Psychiatric Disorders, Chem. Rev. Lett., 5: 234-240 (2022).
[64] Siadati S.A., Vessally E., Hosseinian A., Edjlali L., Possibility of Sensing, Adsorbing, and Destructing the Tabun-2D-skeletal (Tabun nerve agent) by C20 Fullerene and its Boron and Nitrogen Doped Derivatives, Synthetic Metals, 220: 606-611 (2016).‏
[65] Rabipour S., Mahmood E.A., Afsharkhas M., Medicinal Use of Marijuana and its Impacts on Respiratory System, J. Chem. Lett., 3: 86-94 (2022).
[66] Cao Y., Soleimani-Amiri S., Ahmadi R., Issakhov A., Ebadi A.G., Vessally E., Alkoxysulfenylation of Alkenes: Development and Recent Advances, RSC Advances, 11: 32513-32525 (2021).
[67] Vessally E., Soleimani-Amiri S., Hosseinian A., Edjlali L., Babazadeh M., Chemical Fixation of CO2 to 2-aminobenzonitriles: A Straightforward Route to Quinazoline-2, 4 (1H, 3H)-Diones with Green and Sustainable Chemistry Perspectives, J. CO2 Util., 21: 342-352 (2017).
[68] Arshadi S., Vessally E., Hosseinian A., Soleimani-Amiri S., Edjlali L., Three-Component Coupling of CO2, Propargyl Alcohols, and Amines: An Environmentally Benign Access to Cyclic and Acyclic Carbamates (A Review), J. CO2 Util., 21: 108-118 (2017).
[69] Kassaee M.Z., Buazar F., Soleimani-Amiri S., Triplet Germylenes with Separable Minima at ab Initio and DFT Levels, Journal of Molecular Structure: THEOCHEM, 866(1-3): 52-57 (2008).
[70] Kassaee M.Z., Aref Rad H., Soleimani Amiri S., Carbon–Nitrogen Nanorings and Nanoribbons: A Theoretical Approach for Altering the Ground States of Cyclacenes and Polyacenes, Monatshefte für Chemie-Chemical Monthly, 141(12): 1313-1319 (2010).
[71] Koohi M., Soleimani Amiri S., Haerizade B.N., Substituent Effect on Structure, Stability, and Aromaticity of Novel BnNmC20–(n+ m) Heterofullerenes, Journal of Physical Organic Chemistry, 30(11): e3682 (2017).
[73] Soleimani‐Amiri S., Singlet and Triplet Cyclonona‐3, 5, 7‐trienylidenes and their α, ά‐halogenated Derivatives at DFT, Journal of Physical Organic Chemistry, 33(2): e4018 (2020).
[74] Soleimani-Amiri, S., Asadbeigi, N., Badragheh, S. A Theoretical Approach to New Triplet and Quintet (nitrenoethynyl) alkylmethylenes,(nitrenoethynyl) alkylsilylenes,(nitrenoethynyl) alkylgermylenes. Iran. J. Chem. Chem. Eng., 39(4): 39-52 (2020).
[76] Poor Heravi M.R., Azizi B., Abdulkareem Mahmood E., Ebadi A.G., Ansari M.J., Soleimani-Amiri S., Molecular Simulation of the Paracetamol Drug Interaction with Pt-decorated BC3 Graphene-Like Nanosheet, Molecular Simulation, 48(6): 517-525 (2022).
[77] Ghazvini M., Sheikholeslami-Farahani F., Soleimani-Amiri S., Salimifard M., Rostamian R., Green Synthesis of Pyrido [2, 1-a] isoquinolines and Pyrido [1, 2-a] Quinolines by Using ZnO Nanoparticles, Synlett, 29(04): 493-496 (2018).
[78] Soleimani‐Amiri S., Shafaei F., Varasteh Moradi A., Gholami‐Orimi F., Rostami Z., A Novel Synthesis and Antioxidant Evaluation of Functionalized [1, 3]‐Oxazoles Using Fe3O4‐Magnetic Nanoparticles. Journal of Heterocyclic Chemistry, 56(10): 2744-2752 (2019).
[79] Soleimani Amiri S., Green Production and Antioxidant Activity Study of New Pyrrolo [2, 1‐a] isoquinolines.  J. Heterocyclic Chem., 57(11): 4057-4069 (2020).
[81] Taheri Hatkehlouei S.F., Mirza B., Soleimani-Amiri S., Solvent-free One-Pot Synthesis of Diverse Dihydropyrimidinones/ Tetrahydropyrimidinones Using Biginelli Reaction Catalyzed by Fe3O4@ C@ OSO3H, Polycyclic Aromat. Compd., 42(4): 1341-1357 (2022).
[84] Feizpour Bonab M., Soleimani-Amiri S., Mirza B., Fe3O4@C@PrS-SO3H: A Novel Efficient Magnetically Recoverable Heterogeneous Catalyst in the Ultrasound-Assisted Synthesis of Coumarin Derivatives, Polycyclic Aromat. Compd., 1-16 (2022).
[86] Khoshtarkib Z., Ebadi A., Alizadeh R., Ahmadi R., Amani V., Dichloridobis (phenanthridine-κN) zinc (II), Acta Crystallog. E: 65(7): m739-m740 (2009).
[89] Iji M., Dass P. M., Shalbugau K. W., Penuel B.L., Synthesis and Characterization of Heterogeneous Catalysts from Magnetic Sand and Kaolin, Journal of Chemistry Letters, 1(3): 139-142 (2020)
[90] Ahmadi R., Khalighi A., Kalateh K., Amani V., Khavasi H.R., Catena-Poly [[(5, 5′-dimethyl-2, 2′-bipyridine-κ2N, N′) cadmium (II)]-di-μ-chlorido], Acta Crystallog. E, 64(10): m1233-m1233 (2008).
[92] Soleimani‐Amiri S., Arabkhazaeli M., Hossaini Z., Afrashteh S., Eslami A. A. Synthesis of Chromene Derivatives via Three‐Component Reaction of 4‐hydroxycumarin Catalyzed by Magnetic Fe3O4 Nanoparticles in Water, Journal of Heterocyclic Chemistry, 55(1): 209-213 (2018).
[93] Soleimani‐Amiri S., Hossaini Z., Arabkhazaeli M., Karami H., Afshari Sharif Abad S. Green Synthesis of Pyrimido‐Isoquinolines and Pyrimido‐Quinoline Using ZnO Nanorods as an Efficient Catalyst: Study of Antioxidant Activity, Journal of the Chinese Chemical Society, 66(4): 438-445 (2019).
[96] Karbakhshzadeh A., Majedi S., Abbasi V., Computational Investigation on Interaction Between Graphene Nanostructure BC3 and Rimantadine Drug, J. Chem. Lett., 3: 108-113 (2022).
[97] Norouzi N., Ebadi A. G., Bozorgian A., Vessally E., Hoseyni S. J.,  Energy and Exergy Analysis of Internal Combustion Engine Performance of Spark Ignition for Gasoline, Methane, and Hydrogen Fuels, Iran. J. Chem. Chem. Eng. (IJCCE), 40(6): 1909-1930 (2021).
[98] Rabipour S., Mahmood E. A., Afsharkhas M., Abbasi V., Cannabinoids Impact on Cognition: A Review from the Neurobiological Perspective, Chem. Rev. Lett., 6: 7-14 (2023).
[99] Norouzi N., Ebadi A. G., Bozorgian A., Hoseyni S. J., Vessally E., Cogeneration System of Power, Cooling, and Hydrogen from Geothermal Energy: An Exergy Approach, Iran. J. Chem. Chem. Eng. (IJCCE), 41(2): 706-721 (2022).
[100] Silas K., Musa Y.P., Habiba M.D., Effective Application of Jatropha Curcas Husk Activated ZnCl2, Chem. Rev. Lett., 5: 153-160 (2022).
[101] Khezri A., Edjlali L., Eshaghi M., Vardini M.T., Basharnavaz H., A Novel [3-(4-methoxyphenyl) isoxazole-5-yl]-methanol Compound: Synthesis, Chem. Rev. Lett., 5: 113-118 (2022).
[102] Hoseyni S.J., Manoochehri M., Asli M.D., Synthesis and Crystal Structure of Dibromido{[(2-Pyridyl) methyl](p-ethylphenyl)amine}Zinc, Chem. Rev. Lett., 5: 99-105 (2022).
[103] Kadhim M.M., Mahmood E.A., Abbasi V., Poor Heravi M.R., Habibzadeh S., Mohammadi-Aghdam S., Soleimani-amiri S., Theoretical Investigation of the Titanium—Nitrogen Heterofullerenes Evolved from the Smallest Fullerene, J. Mol. Graph. Model., (2022).
[104] Porgar S., Rahmanian N., Phase equilibrium for hydrate formation in the Methane and Ethane system and effect of inhibitors, Chem. Rev. Lett., 5: 2-11 (2022).
[105] Kadhim M.M., Mahmood E.A., Abbasi V., Poor Heravi M.R., Habibzadeh S., Mohammadi-Aghdam S., Shoaei S.M., Theoretical Investigation of the Titanium—Nitrogen Heterofullerenes Evolved from the Smallest Fullerene, J. Mol. Graph. Model., 117: 108269 (2022).
[106] Avşar C., Tümük D., Ertunç S., Gezerman A.O., A Review on Ammono-Carbonation Reactions: Focusing on the Merseburg Process, Chem. Rev. Lett., 5: 83-91 (2022).
[107] Rabipour S., Mahmood E., Ebadi A., Bozorgian A., Vessally E., Asadi Z., Afsharkhas M., A Systematic Review of Therapeutic Potential of Illicit Drugs: A Narrative Overview of How Cannabinoids and Psychedelics Can be Used in Medicine, Iran. J. Chem. Chem. Eng. (IJCCE), 41(3): 722-752 (2022).