Synthesis of Thiophene-Based Flavone Schiff Base Derivatives and a Comparison of Biological Activities with Furanflavone Analogs

Document Type : Research Article

Authors

Department of Chemistry, Acharya Nagarjuna University, NNagar-522 510, Guntur, AP-INDIA

Abstract

In this investigation, a series of thiophene-based flavone Schiff base derivatives were synthesized starting from phloroglucinol. Initially, the acetophenone derivative of phloroglucinol, 2-hydroxy-4,6-di-O-methyl phloroglucinol (3) was prepared by acetylation followed by selective O-methylation. Later, compound 3 was condensed with thiophenealdehyde to obtain respective thiophene chalcone and was cyclized with I2/DMSO to get the corresponding thiophene-based flavones intermediate. In the final stage, the titled Schiff base derivatives were obtained by formulation at the 8th position of the flavone skeleton followed by condensation with various amines. All the synthesized compounds were tested for their antibacterial and anticancer activities. Among the tested compounds, compound 8h (3-Cl, 4-NO2) showed good to excellent antibacterial activity on four microorganisms. Further, the compounds were compared with corresponding Schiff’s base analogs of furan-flavone Schiff's bases.

Keywords

Main Subjects


[1] Shah R., Verma P.K., Therapeutic Importance of Synthetic Thiophene, Chem. Cent. J., 12:137 (2018).
[2] Tehranchian S., Akbarzadeh T., Fazeli M.R., Jamalifar H., Shafee A., Synthesis and Antibacterial Activity of 1-[1,2,4-triazol-3-yl] and 1-[1,3,4-thiadiazol-2-yl]-3-methylthio-6,7-dihydrobenzo[c] thiophen-4(5H)ones. Bioorg. Med. Chem. Lett., 15:1023-1025 (2005).
[3] Pillai A.D., Rathod P.D., Xavier F.P., Padh H., Sudarsanam V., Vasu K.K., Tetra Substituted Thiphenes as Anti-Inflammatory Agents: Exploitation of Analogue-Based Drug Design, Bioorg. Med. Chem.,13: 6685-6692(2005).
[4] Russell R.K., Press J.B., Rampulla R.A., McNally J.J., Falotico R., Keiser J.A., Bright D.A., Tobia A., Thiophene System. 9. Thioenopyrimidinedione Derivatives as Potential Antihypertensive Agents, J. Med. Chem., 31:1786-1793 (1988).
[5] Chen Z., Ku T.C., Seley K.L., Thiophene-Expanded Guanosine Analogues of Gemcitabine, Bioorg. Med. Chem. Lett., 25: 4274-4276 (2015).
[6] Ferreira D., Slade D., Oligomeric Proanthocyanidins: Naturally Occurringo-heterocycles Nat. Prod. Rep., 19: 517-541 (2002).
[7] Corder R., Mullen W., Khan N.Q., Marks S.C., Wood E.G., Carrier M.J., Crozier A., Oenology: Red Wine Procyanidins and Vascular Health, Nature, 444: 566 (2006).
[8] Keen C.L., Chocolate: Food as Medicine /Medicine as Food. J. Am. Coll. Nutr., 20: 436S-439S (2001).
[9] Ferreira D., Li X.C., Oligomeric Proanthocyanidins: Naturally Occurring O-heterocycles Nat. Prod. Rep., 17: 193-212 (2000).
[10] Gerdin B., Srensso E., Inhibitory Effect of the Flavonoid O-(beta-hydroxyethyl)-rutoside on Increased Microvascular Permeability Induced by Various Agents in Rat Skin, Int. J. Microcir. Clin. Exp., 2: 39-46 (1983).
[11] Zandi K., Teoh B.T., Sam S.S., Wong P.F., Mustafa M.R., Abubakar S., Antiviral Activity of Four Types of Bioflavonoid Against Dengue Virus Type-2, Vir. J., 8: 560 (2011).
[12] Babu A.V., Ramesh N., Trimurtulu G., Babu B.H., Synthesis of C-methyl Chalcones as HIV-Integrase Inhibitors-Computational Approach, Med. Chem. Res., 23: 877-881 (2014).
[13] Lamson D.W., Brignall M.S., Antioxidants and Cancer, Part 3: Quercetin, Altern. Med. Rev., 5: 196-208 (2000).
[14] Maheep K.C., Neelu S., Mahabeer P.D., Yogesh C.J., Flavonoids: A Versatile Source of Anticancer Drugs, Pharmacogn. Rev., 5: 1-12 (2011).
[15] Serafini M., Peluso I., Raguzzini A., Flavonoids as Anti-Inflammatory Agents, Proc. Nutr. Soc., 69: 273-278 (2010).
[16] Pan M.H., Lai C.S., Ho C.T., Anti-Inflammatory Activity of Natural Dietary Flavonoids, Food. Funct., 1: 15-31 (2010).
[17] Cushnie T.P.T., Lamb A.J., AntimicrobialActivity of Flavonoids, Int. J. Antimicrob. Agents., 26: 343-356 (2005).
[18] Pepeljnjak S., Kaladera Z., Zovko M., Antimicrobial Activity of Flavonoids from Pelargonium radula(Cav.) L`Herit, Acta. Pharm., 55: 431-435 (2005).
[19] Gorniak I., Bartoszewski R., Kroliczewski J., Comprehensive Review of Antimicrobial Activities of Plant Flavonoids. Phytochemistry Reviews, 18: 241–272 (2019).
[20] Kayode L.A., Isaac A.B., Adebayo O.O. Synthesis, Characterization, and Antibacterial Activities of New Fluorinated Chalcones, Chemistry Africa, 2: 47-55 (2019).
[21] Heim K.E., Tagliaferro A.R., Bobilya D.J., Flavonoid Antioxidants: Chemistry, Metabolism and Structure-Activity Relationships, J. Nutr. Biochem., 13: 572-584 (2002).
[22] Kukic J., Petrovic S., Niketic M., Antioxidant Activity of Four Endemic Stachys Taxa.Biol. Pharm. Bull., 29: 725-729 (2006).
[23] Babu A.V., Rambabu A., Giriprasad P.V., Rao R.S.C., BabuB. H. Synthesis of (±)-Pisanivanone and Other Analogs as Anti-Tubercolosis Agents, J. Chem., 1-9 (2013).
[24] Rambabu A., Jadav S.S., Babu A.V., Ahsan M.J., Babu B.H., Synthesis of New C-dimethylated Chalcones as Potent Antitubercular Agents, Med. Chem. Res., 27: 1690-1704 (2018).
[25] Kumari K.J., Jadav S.S., Durga T.V., Rani G.U., Babu A.V., Narayana K.J., Jayaprakash V., Ahsan M.J., Babu B.H., Synthesis, Characterization, Docking and Study of Inhibitory Action of Some Novel C-alkylated Chalcones on 5-LOX Enzyme, Chem. Sele., 2: 8771-8778 (2017).
[27] Zheng J.B., Zhang H.F., Gao H., Investigation on Electrochemical Behavior and Scavenging Superoxide Anion Ability of Chrysin at Mercury Electrode, Chin. J. Chem., 23:1042-1046 (2005).
[28] Nishioka T., Kawabata J., Aoyama Y., Baicalein, An α-Glucosidase Inhibitor from Scutellaria Baicalensis, J. Nat. Prod., 61: 1413-1415 (1998).
[29] Ryu H.W., Lee B.W., Curtis-Long M.J., Jung S., Ryu Y.B., Lee W.S., Park K.H., Polyphenols from Broussonetia Papyrifera Displaying Potent α-Glucosidase Inhibition, J. Agric. Food. Chem., 58: 202-208 (2010).
[30] Khashi M., Beyramabadi S.A., Gharib A., Novel Schiff Bases of Pyrrole: Synthesis, Experimental and Theoretical Characterizations, Fluorescent Properties and Molecular Docking, Iran. J. Chem. Chem. Eng. (IJCCE), 37: 59-72 (2018).
[31] Madhu K., Synthesis of Schiff Bases: A Glimpse on Recent Literature,Carib. J. Sci. Tech., 9:7-9(2021).
[32] Da Silva C.M., da Silva D.L., Modolo L.V., Alves R.B., Martins C.V.B., de Resende, M.A., Fatima A., Schiff Bases: A Short Review of Their Antimicrobial Activities. J. Adv. Res., 2: 1-8 (2011).
[33] Aziz A.N., Taha M., Ismail N.H., Anouar E.H., Yousuf S., Jamil W., Awang K., Ahmat N., Khan K.M., Kashif S.M., Synthesis, Crystal Structure, DFT Studies and Evaluation of the Antioxidant Activity of 3,4,-dimethoxybenzamine Schiff Bases, Molecules, 19: 8414-8433 (2014).
[34] Kajal A., Bala S., Kamboj S., Sharma N., Saini V., Schiff Bases: A Versatile Pharmacophore, J. Catal., 1: 893512 (2013).
[35] Imran S., Taha M., Ismail N.H., Khan K.M., Naz F., Hussain M., Tauseef S., Synthesis of novel Bisindolylmethane Schiff Bases and Their Antibacterial Activity, Molecules, 19: 11722-11740 (2014).
[36] Iglesias A. L., Miranda-Soto V., Pompa-Monroy D. A., Martinez-Ortiz J. G., Diaz-Trujillo G. C., Villarreal-Gomez L. J. Biological Activity of New Schiff Base Compounds Derived from Substituted 3-aminopyrazoles, The Role of Pyrazole on Bioactivity, Indian J. Pharm Sci., 81: 333-343 (2019).
[37] Babu, B.H., KrishnaK.B.M., Synthesis and Biological Evaluation of SchiffBaseDerivatives of Furfural Based Heterocyclic Flavones, Int. J. Adv. Sci. Eng. Tech., 6(spl.3): 42-43 (2018) (International Conference Proceedings, Thailand, 2018).
[38] Sharief Md.N., Rao V.U.M., Antibacterial Activity of Stem and Root Extracts of Avicenniaofficinalis L., Int. J. Pharm. Appl., 2: 231-236 (2011).
[40] Murti, Y.; Mishra, P. Synthesis and Evaluation of Flavanones as Anticancer Agents, Indian J. Pharm. Sci.,76: 163–166 (2014).