Reducing Nitrate from Water Using Lanthanum-modified Adsorbent: Optimization, Thermodynamics, Kinetics, Isotherms

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Faculty of Engineering, Kermanshah University of Technology, Kermanshah, I.R. IRAN

2 Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, I.R. IRAN

Abstract

Lanthanum-Modified commercial Activated Carbon (LMAC) adsorbent was synthesized, characterized, and then applied for reducing nitrate from aqueous solutions under various conditions. The extent of nitrate removal depended on four factors: temperature, the aqueous solution pH, initial nitrate concentration, and contact time. The Taguchi approach was used as the method of design for the experiments. Under optimal conditions ( T= 300°C, pH=3, C0=10 ppm, and t= 210 min), the removal percentages and capacity of nitrate adsorption were found to be 71.31%, and 1.43 for activated carbon (AC) and 93.31%, and 1.87 LMAC, respectively. Thermodynamic parameters, including enthalpy, Gibbs free energy, and entropy, indicated the spontaneous and exothermic nature of the adsorption process. Various isotherms and first and second-order kinetic models were applied to investigate the adsorption process. The pseudo-second-order kinetic model and Langmuir isotherm could well describe the adsorption process.

Keywords

Main Subjects


[1] Dargahi A., Goestanifar H., Darvishi P., Karami A., Hasan S.H., Poormohammadi A., Behzadnia A.R., An Investigation and Comparison of Removing Heavy Metals (Lead and Chromium) from Aqueous Solutions Using Magnesium Oxide Nanoparticles, Pol. J. Environ. Stud., 25(2): 557-562 (2016).
[2] Davarnejad, R., Karimi Dastnayi Z., Cd (II) Removal from Aqueous Solutions by Adsorption on Henna and Henna with Chitosan Microparticles Using Response Surface Methodology, Iran. J. Chem. Chem. Eng. (IJCCE), 38(3): 267-281 (2019).
[3] Davarnejad R., Shoaie A., Karimi Dastnayi Z., Chehreh M., Investigation of Affecting Parameters on the Adsorption of Lead (II) from Aqueous Solutions on Henna Powdered Leaves, Iran. J. Chem. Chem. Eng. (IJCCE), 39(2): 179-187 (2020).
[4] Erdal Tümer A., Edebali S., Gülcü Ş., Modeling of Removal of Chromium (VI) from Aqueous Solutions Using Artificial Neural Network, Iran. J. Chem. Chem. Eng. (IJCCE), 39(1): 163-175 (2020).
[5] Farrokhnia A., Abdolahpour S., Abbasi Z., Removal of Pb (II) Ion and Safranin Dye from Aqueous Solution by Sheep Wool, Iran. J. Chem. Chem. Eng. (IJCCE), 38(5): 155-163 (2019).
[7] Sayadi M., Farasati M., Mojtaba G. Mahmoodlu F., Rostami Charati F., Removal of Nitrate, Ammonium and Phosphate from Water Using Conocarpus and Paulownia Plant Biochar, Iran. J. Chem. Chem. Eng. (IJCCE), 39(4): 205- 222 (2020).
[8] Ykhlef L., Henini Gh., Hanini S., Fekaouni A., Study of the Kinetics and Thermodynamics of Adsorption of Hexavalent Chromium on the Luffa Cylindrica Cords, Iran. J. Chem. Chem. Eng. (IJCCE), 39(4): 137 - 151 (2020).
[9] Asrari E., Avatefinezhad G., Study of Nitrate Removal from the Water by Using Eichhornia Crassipes, Asian J. Water, Environ. Pollut., 14: 69-74 (2017).
[10] Yin Q., Ren H., Wang R., Zhao Z., Evaluation of Nitrate and Phosphate Adsorption on Al-Modified Biochar: Influence of Al Content, Sci. Total Environ., 631-632: 895-903 (2018).
[11] Nur T., Shim W.G., Loganathan P., Vigneswaran S., Kandasamy J., Nitrate Removal Using Purolite A520E Ion Exchange Resin: Batch and Fixed-Bed Column Adsorption Modelling, Int. J. Environ. Sci. Technol., 12(4): 1311-1320 (2015).
[12] Barber W.P., Stuckey D.C., Nitrogen Removal in a Modified Anaerobic Baffled Reactor (ABR): 1, denitrification, Water Res., 34(9): 2413-2422 (2000).
[13] Amarine M., Lekhlif B., Sinan M., El Rharras A., Echaabi J., Treatment of Nitrate-Rich Groundwater Using Electrocoagulation with Aluminum Anodes, Groundwater for Sustainable Development, 11: 100371 (2020).
[14] He H., Huang Y., Yan M., Xie Y., Li Y., Synergistic Effect of Electrostatic Adsorption and Ion Exchange for Efficient Removal of Nitrate, Colloids Surf. Physicochem. Eng. Aspects, 584: 123973 (2020).
[15] Kayode O.T., Okagbue H.I., Achuka J.A., Water Quality Assessment for Groundwater Around a Municipal Waste Dumpsite, Data in Brief, 17: 579-587 (2018).
[16] Zare, L., Ghasemi-Fasaei R., Investigation of Equilibrium Isotherm and Kinetic Modeling to Asses Sorption Characteristics of Nitrate onto Palm Leaf Biochar, Iran. J. Chem. Chem. Eng. (IJCCE), 38(5): 143-153 (2019).
[18] Breytus A., Hasson D., Semiat R., Shemer H., Removal of Nitrate from Groundwater by Donnan Dialysis, J. Water Process Eng., 34: 101157 (2020).
[19] Chen C., Dong T., Han M., Yao J., Han L., Ammonium Recovery from Wastewater by Donnan Dialysis: A Feasibility Study, J. Cleaner Prod., 265: 121838 (2020).
[21] Wang J., Chu L., Biological Nitrate Removal from Water and Wastewater by Solid-Phase Denitrification Process, Biotechnol. Adv., 34(6): 1103-1112 (2016).
[22] Wan D., Liu H., Liu R., Qu J., Li Sh., Zhang J., Adsorption of Nitrate and Nitrite from Aqueous Solution onto Calcined (Mg–Al) Hydrotalcite of Different Mg/Al Ratio, Chem. Eng. J., 195-196: 241-247 (2012).
[23] Gao Q., Wang Ch.-Z., Li Sh., Hangan D., Liu S.-T., Zhao H.-Z., Ultrafiltration Membrane Microreactor (MMR) for Simultaneous Removal of Nitrate and Phosphate from Water, Chem. Eng. J., 355: 238-246 (2019).
[24] Tong X., Yang Z., Xu P., Li Y., Niu X., Nitrate Adsorption from Aqueous Solutions by Calcined Ternary Mg-Al-Fe Hydrotalcite, Water Sci. Technol., 75(9-10): 2194-2203 (2017).
[25] Kumar I.A., Jeyaprabha C., Viswanathan N., Effect of Polyvalent Metal Ions Encrusted Biopolymeric Hybrid Beads on Nitrate Adsorption, J. Environ. Chem. Eng., 8(4): 103894 (2020).
[26] Yuan J., Amano Y., Machida M., Surface Modified Mechanism of Activated Carbon Fibers by Thermal Chemical Vapor Deposition and Nitrate Adsorption Characteristics in Aqueous Solution, Colloids Surf. Physicochem. Eng. Aspects, 580: 123710 (2019).
[27] Mubita T.M., Dykstra J.E., Biesheuvel P.M., van der Wal A., Porada S., Selective Adsorption of Nitrate over Chloride in Microporous Carbons, Water Res., 164: 114885 (2019).
[28] Wu K., Li Y., Liu T., Huang Q., Yang Sh., Wang W., Jin P., The Simultaneous Adsorption of Nitrate and Phosphate by an Organic-Modified Aluminum-Manganese Bimetal Oxide: Adsorption Properties and Mechanisms, Appl. Surf. Sci., 478: 539-551 (2019).
[29] Ghamkhari A., Rahdar A., Rahdar S., Susan A.B.H., Dual Responsive Superparamagnetic Nanocomposites: Synthesis, Characterization and Adsorption of Nitrate from Aqueous Solution, Nano-Struct. Nano-Objects, 19: 100371 (2019).
[30] Qiao H., Mei L., Chen G., Liu H., Peng Ch., Ke F., Hou R., Wan X., Cai H., Adsorption of Nitrate and Phosphate from Aqueous Solution Using Amine Cross-Linked Tea Wastes, Appl. Surf. Sci., 483: 114-122 (2019).
[32] Hajiaghababaei L., Saeede Abozari S., Badiei A., Zarabadi Poor P., Dehghan Abkenar Sh., Ganjali M.R., Mohammadi Ziarani Gh., Amino Ethyl-Functionalized SBA-15: A Promising Adsorbent for Anionic and Cationic Dyes Removal, Iran. J. Chem. Chem. Eng. (IJCCE), 36(1): 97-108 (2017).
[33] Kenza A., Bensmaili A., Bouafia-Chergui S., Kadmi Y., New Activated Carbon From Wormwood as Efficient Adsorbent of Cationic Dye in Aqueous Solution, Iran. J. Chem. Chem. Eng. (IJCCE), 39(6): 139-148 (2019).
[34] Hunter-Sellars E., Tee J.J., Parkin I.P., Williams D.R., Adsorption of Volatile Organic Compounds by Industrial Porous Materials: Impact of Relative Humidity, Microporous Mesoporous Mater., 298: 110090 (2020).
[35] Hamza W., Fakhfakh N., Dammak N., Belhadjltaeif H., Benzina M., Sono-Assisted Adsorption of Organic Compounds Contained in Industrial Solution on Iron Nanoparticles Supported on Clay: Optimization Using Central Composite Design, Ultrason. Sonochem., 67: 105134 (2020).
[36] Li X., Zhang L., Yang Z., Wang P., yan Y., Ran J., Adsorption Materials for Volatile Organic Compounds (VOCs) and the Key Factors for Vocs Adsorption Process: A Review, Sep. Purif. Technol., 235: 116213 (2020).
[37] Karthikeyan P., Vigneshwaran S., Meenakshi S., Removal of Phosphate and Nitrate Ions from Water by Amine Crosslinked Magnetic Banana Bract Activated Carbon and its Physicochemical Performance, Environ. Nanotechnol. Monit. Manage., 13: 100294 (2020).
[38] Muthu M., Ramachandran D., Hasan N., Jeevanandam M., Gopal J., Shun S., Unprecedented Nitrate Adsorption Efficiency of Carbon-Silicon Nano Composites Prepared from Bamboo Leaves, Mater. Chem. Phys., 189: 12-21 (2017).
[39] Tyagi S., Rawtani D., Khatri N., Tharmavaram M., Strategies for Nitrate Removal from Aqueous Environment Using Nanotechnology: A Review,  J. Water Process Eng., 21: 84-95 (2018).
[40]  Tsai W.-T., Lai C.-W., Su T.-Y., Adsorption of Bisphenol-A from Aqueous Solution onto Minerals and Carbon Adsorbents, J. Hazard. Mater., 134(1): 169-175 (2006).
[41] Ba S., Ennaciri K., Yaacoubi A., Abdelhakim Alagui A., BacaouiA., Activated Carbon from Olive Wastes as an Adsorbent for Chromium Ions Removal. Iran. J. Chem. Chem. Eng. (IJCCE), 37(6): 107-123 (2018).
[43] Tran V.T.L., Gélin P., Ferronato C., Chovelon J.-M., Fine L. Postole G., Adsorption of Linear and Cyclic Siloxanes on Activated Carbons for Biogas Purification: Sorbents Regenerability, Chem. Eng. J., 378: 122152 (2019).
[44] Brea P., Delgado J.A., Águeda. V.I., Ugunina M.A., Comparison between MOF UTSA-16 and BPL Activated Carbon in Hydrogen Purification by PSA, Chem. Eng. J., 355: 279-289 (2019).
[45] Sessa D.J., Palmquist D.E., Effect of Heat on the Adsorption Capacity of an Activated Carbon for Decolorizing/Deodorizing Yellow Zein, Bioresour. Technol., 99(14): 6360-6364 (2008).
[46] Pan J., Jia H., Shang M., Li Q., Xu Ch., Wang Y., Wu H., Dong X., Effects of Deodorization by Powdered Activated Carbon, β-Cyclodextrin and Yeast on Odor and Functional Properties of Tiger Puffer (Takifugu rubripes) Skin Gelatin, Int. J. Biol. Macromol., 118: 116-123 (2018).
[48] Al Mesfer M.K., Danish M., Breakthrough Adsorption Study of Activated Carbons for CO2 Separation from Flue Gas, J. Environ. Chem. Eng., 6(4): 4514-4524 (2018).
[49] Jahromi F.G., Cowan D.H., Ghahreman A., Lanxess Lewatit®AF 5 and Activated Carbon Catalysis of Enargite Leaching in Chloride Media; A Parameters Study, Hydrometallurgy, 174: 184-194 (2017).
[51] Yang Y., Koh K.Y., Li R., Zhang H., Yan Y., Chen J.P., An Innovative Lanthanum Carbonate Grafted Microfibrous Composite for Phosphate Adsorption in Wastewater, J. Hazard. Mater., 392: 121952 (2020).
[52] Li X., Kuang Y., Chen J., Wu D., Competitive Adsorption of Phosphate and Dissolved Organic Carbon on Lanthanum Modified Zeolite, J. Colloid Interface Sci., 574: 197-206 (2020).
[53] Wang L., Kuang Y., Chen J., Wu D., MgFe2O4-Biochar Based Lanthanum Alginate Beads for Advanced Phosphate Removal, Chem. Eng. J., 387: 123305 (2020).
[54] Kong L., Tian Y., Li N., Liu Y., Zhang J., Zhang J., Zuo W., Highly-Effective Phosphate Removal From Aqueous Solutions by Calcined Nano-Porous Palygorskite Matrix with Embedded Lanthanum Hydroxide, Appl. Clay Sci., 162: 507-517 (2018).
[55] Huong P.T., Jitae K., Giang B.L., Nguyen T., Thang P.Q., Novel Lanthanum-Modified Activated Carbon Derived From Pine Cone Biomass as Ecofriendly Bio-Sorbent for Removal of Phosphate and Nitrate in Wastewater, Rendiconti Lincei. Scienze Fisiche e Naturali, 30(3): 637-647 (2019).
[56] Wang Z., Guo H., Shen G., Yang G., Zhang Y., Zeng Y., Wang L., Xiao H., Deng Sh., Biochar Produced from Oak Sawdust by Lanthanum (La)-Involved Pyrolysis for Adsorption of Ammonium (NH4+), Nitrate (NO3-), and Phosphate (PO43-), Chemosphere, 119: 646-653 (2015).
[57] Rao R.S., Prakashma R.S., Prasad K.K., Rajeshma S., Sarma P.N., Rao L.V., Xylitol Production by Candida sp.: Parameter Optimization Using Taguchi Approach, Process Biochem., 39: 951-956 (2004).
[58] Pourjavadi A., Ayyari M., Amini-Fazl M.S., Taguchi Optimized Synthesis of Collagen-g-poly(acrylic acid)/Kaolin Composite Superabsorbent Hydrogel, Eur. Polym. J., 44(4): 1209-1216 (2008).
[61] Dehghani M.H., Sanaei D., Ali I., Bhatnagar A., Removal of Chromium(VI) from Aqueous Solution Using Treated Waste Newspaper as a Low-Cost Adsorbent: Kinetic Modeling and Isotherm Studies, J. Mol. Liq., 2016. 215: p. 671-679.
[63] Kuroki, V., Bosco G.E., Fadini P.S., Mozeto A.A>, Cestari A.R., Carvalho W.A., Use of a La(III)-Modified Bentonite for Effective Phosphate Removal from Aqueous Media, J. Hazard. Mater., 274: 124-131 (2014).
[62] Tang J., Chen J., Huang W., Li D., Zhu Y., Tong Y., Zhang Y., Porous Pr(OH)3 Nanowires as Novel High-Performance Adsorbents for Phosphate Removal, Chem. Eng. J., 252: 202-209 (2014).
[66] Genç-Fuhrman H., Tjell J.C., McConchie D., Adsorption of Arsenic from Water Using Activated Neutralized Red Mud, Environ. Sci. Technol., 38(8): 2428-2434 (2004).
[67] Kamaraj R., Pandiarajan A., Jayakiruba S., Naushad Mu., Vasudeva S., Kinetics, Thermodynamics and Isotherm Modeling for Removal of Nitrate from Liquids by Facile One-Pot Electrosynthesized Nano Zinc Hydroxide, J. Mol. Liq., 215: 204-211 (2016).
[68] A. Khani M.M., "Comparative Study of Nitrate Removal from Aqueous Solution Using Powder Activated Carbon and Carbon Nanotubes", 2nd International IUPAC Conference on Green Chemistry. Russia. p. 14-19 (2008).
[69] Orlando U.S., Baes A.U., Nishijima W., Okada M., A New Procedure to Produce Lignocellulosic Anion Exchangers from Agricultural Waste Materials, Bioresour. Technol., 83(3):  195-198 (2002).
[70] Xi Y., Mallavarapu M., Naidu R., Preparation, Characterization of Surfactants Modified Clay Minerals and Nitrate Adsorption, Appl. Clay Sci., 48(1): 92-96 (2010).
[71] Mizuta K., Masumoto T., Hatate Y., Nishihara K., Nakanishi T., Removal of Nitrate-Nitrogen from Drinking Water Using Bamboo Powder Charcoal, Bioresour. Technol., 95(3): 255-257 (2004).
[72] Mishra P.C., Patel R.K., Use of Agricultural Waste for the Removal of Nitrate-Nitrogen from Aqueous Medium, J. Environ. Manage., 90(1): 519-522 (2009).
[73] Öztürk N., Bektaş T.E.l., Nitrate Removal from Aqueous Solution by Adsorption onto Various Materials, J. Hazard. Mater., 112(1): 155-162 (2004).
[74] Afkhami A., Madrakian T., Karimi Z., The Effect of Acid Treatment of Carbon Cloth on the Adsorption of Nitrite and Nitrate Ions, J. Hazard. Mater., 144(1): 427-431 (2007).