A Taguchi Optimization Study about the Dissolution of Colemanite in Ammonium Bisulfate (NH4HSO4) Solution

Document Type : Research Article

Authors

1 Osmaniye Korkut Ata University, Department of Chemical Engineering, 80000, Osmaniye, TURKEY

2 Ardahan University, Department of Environmental Engineering, 75002, Ardahan, TURKEY

Abstract

In this study, the optimum conditions of the dissolution of colemanite (2CaO.3B2O3.5H2O) ore in ammonium bisulfate (NH4HSO4) solution were examined by using Taguchi fractional design methods, and an alternative reactant for boric acid extraction process from colemanite ore was specified. The studied parameters and optimum conditions for the dissolution process were the following; reaction temperature: 50˚C, solid/liquid ratio: 0.1 g/mL, particle size: -80 mesh, mixing speed: 600 rpm, and reaction time: 25 minutes. Particle size, mixing speed, and reaction time had the most significant effect on dissolution when compared to the others. Accordingly, the dissolution efficiency of colemanite was found to be 99.54% under optimum conditions and using NH4HSO4 as a solvent enabled the selective separation of boron from the colemanite ore. The ammonium sulphate formed as a by-product was converted into NH4HSO4 by the addition of the appropriate stoichiometric amount of sulfuric acid and fed back into the dissolution vessel.

Keywords

Main Subjects


[1] Çetin E., Eroğlu İ., Özkar S., Kinetics of Gypsum Formation and Growth During the Dissolution of Coleminite in Sulfuric Acid, J. Cryst. Growth., 231: 559-567 (2001).
[2] Abalı Y., Bayca S.U., Mistincik E., Kinetics of Oxalic Acid Leaching of Tincal, Chem. Eng. J., 123: 25-30 (2006).
[3] Koçak İ., Koç Ş., Geochemical Characteristics of the Emet (Espey-Hisarcik) Borate Deposits, Kütahya, Turkey, Journal of African Earth Sciences, 142: 52-63 (2018).
[4] Rao R.S., Kumar C.G., Prakasham R.S., Hobbs P.J., Taguchi Methodology as a Statistical Tool for Biotechnological Applications: A Critical Appraisal, Biotechnology Journal: Healthcare Nutrition Technology, 3(4): 510-523 (2008).
[5] Ceyhun I., Kocakerim M.M., Saraç H., Çolak S., Dissolution Kinetics of Colemanite in Chlorine Saturated Water. Theor. Found, Chem. Eng., 33(3): 253-257 (1999).
[6] Küçük Ö., “Üleksitten Monosodyum Pentaborat üretimi”. Doktora Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum (2003).
[7] Guliyev R., Kuslu S., Calban T., Colak S., Leaching Kinetics of Colemanite in Potassium Hydrogen Sulphate Solutions, J. Ind. Eng. Chem., 18(1): 38-44 (2012).
[8] Temur H., Yartaşı A., Çopur M., Kocakerim M.M. The Kinetics of Dissolution of Colemanite in H3PO4 Solutions, Ind. Eng. Chem. Res., 39(11): 4114-4119 (2000).
[9] Künkül A., Aslan N. E., Ekmekyapar A., Demirkıran N., Boric Acid Extraction from Calcined Colemanite with Ammonium Carbonate Solutions, Ind. Eng. Chem. Res., 51(9): 3612-3618 (2012).
[10] Beşe A.V., Borulu N., Çopur M., Çolak S., Ata O.N., Optimization of Dissolution of Metals From Waelz Sintering Waste (WSW) Byhydrochloric Acid Solutions, Chem. Eng. J., 162: 718-722 (2010).
[12] Sis H., Bentli I., Demirkiran N.,  Ekmekyapar A., Kolemanitin Sülfürik Asit Çözeltilerinde Çözünmesinin Partikül Boyutu Ölçümleriyle İncelenmesi, Ayırma Bilimi ve Teknolojisi, 54 (8): 1353-1362 (2019). 
[13] Küçük Ö., Application of Taguchi Method in the Optimization of Dissolution of Ülexite in (NH4)Cl Solutions, Korean Journal of Chem. Eng., 23: 21-27 (2006).
[14] Yeşilyurt M., Çolak S., Çalban T., Serbest Düşmeli “Bir Flaş Kalsinasyon Fırınında Kolemanit”, in Optimum Kalsinasyon Şartlarının Belirlenmesi, 6.Ulusal Kimya Mühendisleri Kongresi, İzmir (2004).
[15] Bilga P.S., Singh S., Kumar R., Optimization of Energy Consumption Response Parameters for Turning Operation Using Taguchi Method, Journal of Cleaner Production, 137: 1406-1417 (2016).           
[16] Doğan H. T., Yartaşı A., Optimization of Dissolution of Ulexite in Phosphate Acid Solutions, Journal of the Chemical Society of Pakistan 36(4): 601-605 (2014).
[17] Logothetis N., Managing for Total Quality from Deming to Taguchi and SPC. Prentice Hall. Englewood Cliffs, NJ., 145-168  (1992).
[18] Greenberg A.E., Trussell R.R., Clesceri L.S., Standard Methods for the Examination of Water and wastewater. American Public Health Association, Washington, DC, 415-422 (1985).
[19] Ekinci Z, Kurdal E, Coruh MK., Taguchi Approach and ANOVA in Optimization of the Dissolution of Colemanite in CO2 and SO2-Water Systems, Current Physical Chemistry. 10(2): 88-97 (2020).
[20] Copur M., Kizilca M., Kocakerim M.M., Determination of the Optimum Conditions for Copper Leaching from Chalcopyrite Concentrate Ore Using Taguchi Method, Chemical Engineering Communications, 202(7): 927-935 (2015). 
[21] Küçük Ö., Kocakerim, M. M. and Çopur, M., Optimization of Dissolution of Ulexite in (NH4)2SO4 Solutions, Canadian Metallurgical Quarterly, 44: 53-58 (2005).
[22] Badkar D. S., Pandey K. S., Buvanashekaran G. Parameter Optimization of Laser Transformation Hardening by Using Taguchi Method and Utility Concept, International Journal of Advanced Manufacturing Technology, 52 (9–12): 1067–1077 (2011).
[23] Kağnıcıoğlu C. H., “Üretim Öncesi Kalite Kontrolünde Taguchi Yöntemi Ve Kükürtdioksit Giderici Sitrat Yöntemine Uygulanması”, Doktora Tezi, Anadolu Üniversitesi, Sosyal Bilimler Enstitüsü, Eskişehir (1998).
[24] Sood A.K., Ohdar R.K., Mahapatra, S.S., Improving Dimensional Accuracy of Fused Deposition Modelling Processed Part Using Grey Taguchi Method. Materials and Design, 30(10): 4243–4252 (2009).
[25] Demir F., Dönmez B., Optimization of the Dissolution of Magnesite in Citric Acid Solutions. Int. J. Miner. Process, 87: 60-64 (2007).
[26] Nemodruk A.A., Karalova Z.K.,  Kondor R., “Analytical Chemistry of Boron”, Academy of Sciences of the U.S.S.R Vernadskii, Institute of Geochemistry and Analytic Chemistry, Israel Program for Scientific Translation, Jerusalem pp. 18-19 (1969).
[27] Doğan H.T., Yartaşı A., Optimization of Dissolution of Ulexite in Phosphate Acid Solutions. Academic Journal, 8 (37): 1796-1801 (2013).
[28] Karagöz O., Kuslu S., Optimization of Dissolution of Colemanite ore In Potassium Dihydrogen Phosphate Solution (KH2PO4), PressAcademia Procedia, 5(1): 402-409 (2017).
[29] Ekinci Z., Kurdal E., Coruh M. K. Taguchi Approach and ANOVA in Optimization of the Dissolution of Colemanite in CO2 and SO2- Water Systems, Current Physical Chemistry, 10(2): 88–97 (2019).
[30] Küçük Ö.,  Korucu H., Optimization of  Boric Acid Extraction from Colemanite with an Environmentally Friendly Process by Using the Taguchi Method, Journal of the Chemical Society of Pakistan, 40(3): 437–446 (2018).
[31] Bingöl M.S., Çopur M., Determination of Optimum Conditions for Boric Acid Production from Colemanite by Using CO2 in High-Pressure Reactor, Journal of CO2 Utilization, 29: 29–35 (2019).
[32] Küçük Ö., Application of Taguchi Method in the Optimization of Dissolution of Ulexite in NH4Cl Solutions, Korean Journal of Chemical Engineering, 23: 21-27 (2006).
[33] Roy R.K., "A Primer on the Taguchi Method", Society of Manufacturing Engineers, (2010).