Response Surface Modeling of the Removal of Methyl Orange Dye from an Aqueous Solution Using Magnesium Oxide Nanoparticles Immobilized on Chitosan

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Mettu University, ETHIOPIA

2 Centre for Disaster Mitigation and Management, Vellore Institute of Technology, Vellore, TamilNadu-632014, INDIA

3 Department of Mechanical Engineering, Prince Mohammed Bin Fahd University, Kingdom of SAUDI ARABIA

4 Department of Chemical Engineering, Andhra University, Vizag, INDIA

Abstract

In this work, the chitosan-based magnesium oxide nanoparticles (CS-MgONP) composite was used as an adsorbent for the removal of the organic dye Methyl Orange (MO). The adsorbent characterization was carried out using X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), and Fourier Transform InfraRed (FT-IR) spectroscopy. The faster equilibrium, i.e. at an agitation time of 30 min, indicated the faster adsorption capability of the prepared adsorbent CS-MgONP. The Central Composite Design (CCD) of response surface methodology (RSM) was used to evaluate the impact of process parameters in the range of pH (6-10), CS-MgONP dosage (0.1-0.5g/L), MO concentration (10-30mg/L), and temperature (283-323K) at an optimal agitation period of 30 min. Under optimum conditions of pH=7.93, CS-MgONP dosage=0.4g/L, initial MO concentration=15mg/L, and temperature=313 K, 96.42% removal of MO was achieved with a desirability of 0.805. The adsorption of MO onto CS-MgONP was best fitted with the Langmuir adsorption isotherm, with an uptake capacity of 237.5 mg/g, and followed the pseudo-second-order kinetics. The thermodynamic studies showed positive enthalpy and negative Gibbs free energy that confirmed the spontaneous and endothermic process. Due to the fast equilibrium agitation period, i.e.30 min, and high adsorption capacity, the adsorbent CS-MgONP proved to be an excellent choice for dye removal.

Keywords

Main Subjects


[1] Hajira T, Atika S, Muhammad S., Synthesis of Kaolin Loaded Ag and Ni Nanocomposites and Their Applicability for the Removal of Malachite Green Oxalate Dye, Iran. J. Chem. Chem. Eng. (IJCCE), 37: 11–22 (2018).
[2] Kamranifar M, Naghizadeh A., Montmorillonite Nanoparticles in Removal of Textile Dyes from Aqueous Solutions: Study of Kinetics and Thermodynamics, Iran. J. Chem. Chem. Eng. (IJCCE), 36: 127–137 (2017).
[5] Wang J., Yao W., Gu P., Yu Sh., Wang X., Du Y., Wang H., Chen Z., Hayat T., Wang X., Efficient Coagulation of Graphene Oxide on Chitosan–Metal Oxide Composites from Aqueous Solutions, Cellulose, 24: 851–861 (2017).
[6] Abbasi S.,  Adsorption of Dye Organic Pollutant Using Magnetic ZnO Embedded on the Surface of Graphene Oxide, J Inorg Organomet Polym Mater., 30: 1924–1934 (2019).
[8] Fakhrzad M, Navidpour A.H., Tahari M., Abbasi.S., Synthesis of Zn2SnO4 Nanoparticles Used for Photocatalytic Purposes Mater, Res. Express, 6: 095037, (2019).
[9] Fakhrzad M., Navidpour A.H., Tahari M., Abbasi S., Photocatalytic Removal of Methyl Orange in Suspension Containing ZnO and SnO2 Nanoparticles and Investigation the Influence of Effective Variables on the Process, Iranian Journal of Health and Environment, 9(3):433-42 (2016)
[10] Ghaderi A., Abbasi S., Farahbod F., Synthesis, Characterization and Photocatalytic Performance of Modified ZnO Nanoparticles with SnO2 Nanoparticles, Mater. Res. Express, 5(6):    (2018).
[11] Abbasi S, Ahmadpoor F, Imani N, Mehri K., Synthesis of Magnetic Fe3O4@ZnO@Graphene Oxide Nanocomposite for Photodegradation of Organic Dye Pollutant, International Journal of Environmental Analytical Chemistry, 100(2):  (2019).
[12] Navidpour AH, Fakhrzad M, Tahari M, Abbasi S., Novel Photocatalytic Coatings Based on Tin Oxide Semiconductor, Surf. Eng., 35: 216–226 (2019).
[14] Wang L., Jiang J., Pang S.Y., Zhou Y., Sun Sh., Gao Y., Jiang Ch.G., Oxidation of Bisphenol a by Nonradical Activation of Peroxymonosulfate in the Presence of Amorphous Manganese Dioxide. Chem. Eng. J., 352: 1004–1013 (2018).
[15] Özer D., Aksu Z., Kutsal T., Çaglar A., Adsorption Isotherms of Lead(ii) and Chromium(vi) on Cladophora Crispata, Environ Technol (United Kingdom), 15: 439-448 (1994).
[18] Fan L, Luo C, Li X, Li X., Lu F., Qiu H., Sun M., Fabrication of Novel Magnetic Chitosan Grafted with Graphene Oxide to Enhance Adsorption Properties for Methyl Blue, J. Hazard Mater, 215–216: 272–279 (2012).
[19] Yang D., Qiu L., Yang Y., Efficient Adsorption of Methyl Orange Using a Modified Chitosan Magnetic Composite Adsorbent, J. Chem. Eng. Data., 61: 3933–3940 (2016).
[20] Moradi Dehaghi S., Rahmanifar B., Moradi A.M., Azar P.A., Removal of Permethrin Pesticide from Water by Chitosan-Zinc Oxide Nanoparticles Composite as an Adsorbent, J Saudi Chem Soc., 18: 348–355 (2014) 
[21] Travlou N.A., Kyzas G.Z., Lazaridis N.K., Deliyanni E.A., Functionalization of Graphite Oxide with Magnetic Chitosan for the Preparation of a Nanocomposite Dye Adsorbent. Langmui, 29(5): 1657–1668(2013).
[22] Vakili M., Rafatullah M., Salamatinia B., Zuhairi Abdullah A., Hakimilbrahim M., Bing Tang K., Gholami Z., Amouzgar P., Application of Chitosan and its Derivatives as Adsorbents for Dye Removal from Water and Wastewater: A Review, Carbohydr Polym, 113: 115–130 (2014).
[23] Chatterjee S., Chatterjee T., Lim S., Woo S.H., Adsorption of a Cationic Dye, Methylene Blue, on to Chitosan Hydrogel Beads Generated by Anionic Surfactant Gelation, Environ Technol., 32: 1503–1514(2011).
[24] Gopinathan R., Bhowal A., Garlapati C., Adsorption Studies of Some Anionic Dyes Adsorbed by Chitosan and New Four-Parameter Adsorption Isotherm Model, J. Chem. Eng. Data, 64(6): 2320-2328 (2019).
[26] Hu J., Song Z., Chen L., Yang H., Li J., Richards R., Adsorption Properties of MgO(111) Nanoplates for the Dye Pollutants from Wastewater, J. Chem. Eng. Data, 55: 3742-3748 (2010).
[27] Purwajanti S., Zhou L., Ahmad Nor Y., Zhang J., Zhang H., Huang X., Yu Ch., Synthesis of Magnesium Oxide Hierarchical Microspheres: A Dual-Functional Material for Water Remediation. ACS Appl. Mater. Interfaces, 7: 21278–21286(2015).
[28] Sawai J., Kojima H., Igarashi H., Hashimoto A., Shoji S., Sawaki T., Hakoda A., Kawada E., Kokugan T., Shimizu M., Antibacterial Characteristics of Magnesium Oxide Powder, World J. Microbiol. Biotechnol., 16: 187–194 (2000).
[29] Cao C.Y., Qu J., Wei F., Li H., Song W.-G., Superb Adsorption Capacity And Mechanism of Flowerlike Magnesium Oxide Nanostructures for Lead and Cadmium Ions, ACS Appl. Mater. Interfaces 4:4283–4287(2012).
[30] Kim Y.H., Tuan V.A., Park M.K., Lee C.H., Sulfur Removal from Municipal Gas Using Magnesium Oxides and a Magnesium Oxide/Silicon Dioxide Composite, Microporous Mesoporous Mater., 197: 299–307(2014).
[31] Dhal J.P., Sethi M., Mishra B.G., Hota G., MgO Nanomaterials with Different Morphologies and Their Sorption Capacity for Removal of Toxic Dyes, Mater Lett., 141: 267–271(2015) 
[32] Soleimani F., Salehi M., Gholizadeh A., Comparison of Visible Light Photocatalytic Degradation of Different Pollutants by (Zn, Mg) x Cu 1-x Bi2O4 Nanoparticles, Ceram Int., 45:8926–8939(2019).
[33] Nga N.K., Hong P.T.T, Lam T.D., Huy T.Q., A Facile Synthesis of Nanostructured Magnesium Oxide Particles for Enhanced Adsorption Performance in Reactive Blue 19 Removal, J Colloid Interface Sci., 398: 210–216(2013).
[34] Madzokere T.C., Karthigeyan A., Heavy Metal Ion Effluent Discharge Containment Using Magnesium Oxide (MgO) Nanoparticles, Mater Today Proc., 4: 9-18 (2017).
[35] Li L.H., Deng J.C., Deng H.R., Liu Z.-L., Xin L., Synthesis And Characterization of Chitosan/ZnO Nanoparticle Composite Membranes, Carbohydr Res., 345: 994-998 (2010).
[37] Chen S., Zhang J., Zhang C., Yue Q., Li C., Li Y., Equilibrium and Kinetic Studies of Methyl Orange and Methyl Violet Adsorption on Activated Carbon Derived from Phragmites Australis, Desalination, 252: 149–156 (2010).
[38] Abbasi S., Hasanpour M., Variation of the Photocatalytic Performance of Decorated MWCNTs (MWCNTs-ZnO) with pH for Photo Degradation of Methyl Orange, Journal of Materials Science Materials in Electronics, 28(2):      (2017).
[39] Abbasi S., Hasanpour M., Ahmadpoor F., Sillanpää M., Dastan D., Achour A., Application of the Statistical Analysis Methodology for Photodegradation of Methyl Orange Using a New Nanocomposite Containing Modified TiO2 Semiconductor with SnO2, Int J Environ Anal Chem., 00: 1–17 (2019).
[41] Abbasi S., Mehri K., Tahari M., Modeling and Predicting the Photodecomposition of Methylene Blue via ZnO–SnO2 Hybrids Using Design of Experiments (DOE), Journal of Materials Science Materials in Electronics, 28(3): 15306–15312 (2017).
[42] Roozban N., Abbasi S., Ghazizadeh M., The Experimental and Statistical Investigation of the Photo Degradation of Methyl Orange Using Modified MWCNTs with Different Amount of ZnO Nanoparticles, Journal of Materials Science Materials in Electronics 28(10): 7343–7352 (2017).
[43] Roozban N., Abbasi S., Ghazizadeh M., Statistical Analysis of the Photocatalytic Activity of Decorated Multi-Walled Carbon Nanotubes with ZnO Nanoparticles, Journal of Materials Science Materials in Electronics, 28(8):  6047–6055 (2016).
[44] Jeevanandam J., Chan Y.S., Danquah M.K., Biosynthesis and Characterization of MgO Nanoparticles from Plant Extracts Via Induced Molecular Nucleation, New J. Chem., 41:2800–2814 (2017).
[45] Mahmoud H.R., Ibrahim S.M., El-Molla S.A., Textile Dye Removal from Aqueous Solutions using Cheap MgO Nanomaterials: Adsorption Kinetics, Isotherm Studies and Thermodynamics, Adv. Powder Technol., 27: 223–231 (2016)
[46] Niu H., Yang Q., Tang K., Xie Y., Large-Scale Synthesis of Single-Crystalline MgO with Bone-Like Nanostructures, J. Nanoparticle Res., 8: 881–888 (2006).
[47] Jadhav A.H., Lim A.C., Thorat G.M., Jadhav H.S., Seo J.G., Green Solvent Ionic Liquids: Structural Directing Pioneers for Microwave-Assisted Synthesis of Controlled MgO Nanostructures. RSC Adv., 6: 31675–31686 (2016).
[48] Heidarizad M., Şengör S.S., Synthesis of Graphene Oxide/Magnesium Oxide Nanocomposites with High-Rate Adsorption of Methylene Blue, J. Mol. Liq., 224: 607–617(2016).
[49] Jawad A.H., Mubarak N.S.A., Abdulhameed A.S., Tunable Schiff’s Base-Cross-Linked Chitosan Composite for the Removal of Reactive Red 120 Dye: Adsorption and Mechanism Study, Int. J. Biol. Macromol., 142: 732–741 (2020).
[50] Ma J., Zhuang Y., Yu F., adsorption Studies of Organic Pollutants from Aqueous Solution onto CNT/C @ Fe / Chitosan, New J Chem. 39: 9299-9305 (2015).
[52] Yousefi S., Ghasemi B., Tajally M., Asghari A., Optical Properties of MgO and Mg(OH)2 Nanostructures Synthesized by a Chemical Precipitation Method Using Impure Brine, J. Alloys Compd., 711: 521-529 (2017).
[55] Bagheri A.R., Ghaedi M., Asfaram A., Hajati S., Ghaedi A.M., Bazrafshan A.A., Rahimi M.R.,, Modeling and optimization of Simultaneous Removal of Ternary Dyes onto Copper Sulfide Nanoparticles Loaded on Activated Carbon Using Second-Derivative Spectrophotometry, J. Taiwan Inst. Chem. Eng., 65: 212–224 (2016).
[56] Lagergren S., About the Theory of  SO-Called Adsorption of soluble Substance, Kungliga Svenska Vetenskapsakademiens Handlingar,  24:1–39 (1898).
[57] Ho Y.S., Mckay G., Pseudo-Second order Model for Sorption Processes, Process Biochem, 34: 451–465 (1999).
[58] Allen J.A., Scaife P.H., The Elovich Equation and Chemisorption Kinetics, Aust J. Chem., 19: 2015-2023 (1966).
[60] Langmuir I., The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum, J. Am. Chem. Soc., 40: 1361–1403 (1918).
[61] Freundlich H.,  Über die Adsorption in Lösungen, Zeitschrift für Phys Chemie 57U: (1907)
[62] Aharoni C, Ungarish M., Kinetics of Activated Chemisorption-part 2.- Theoretical Models, J. Chem. Soc. Faraday Trans. 1, 73: 456–464(1977)
[63] Redlich O, Peterson DL., A Useful Adsorption Isotherm, J. Phys. Chem., 63:1024–1024(1959).
[65] Jiang R., Zhu H., Fu Y., Equilibrium and Kinetic Studies on Adsorption of Methyl Orange from Aqueous Solution on Chitosan/Kaolin/γ-Fe2O3 Nanocomposite. Int. Conf Remote Sensing, Environ Transp. Eng. RSETE 2011 - Proc 7565–7568. (2011).
[67] Cho D-W., Jeon B-H., Chon C-M., Schwartz F.W., Jeong Y., Song H., Magnetic Chitosan Composite for Adsorption of Cationic and Anionic Dyes in Aqueous Solution, J. Ind. Eng. Chem., 28:60-66 (2015).