Exergy, Economical and Environmental Analysis of a Natural Gas Direct Chemical Looping Carbon Capture and Formic Acid-Based Hydrogen Storage System

Document Type : Research Article

Authors

Department of Energy Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), Tehran, I.R. IRAN

Abstract

Chemical looping combustion is one of the novel technologies in energy, which can co-generate hydrogen and power with an efficient carbon capture process to control the system’s emission. This system’s carbon capture process is one of the main processes to achieve the United nations’ environmental goals and other climate change control agencies. This paper aims to study Designing a Natural Gas Direct Chemical Looping Carbon capture and Formic acid Hydrogen storage system for a combined cycle power plant and analyze it with energy, exergy, and environmental factors. The model was implemented on a 500 MW combined cycle power plant unit in Iran, and the results show that if the model is implemented on the plant, overall energy efficiency can be increased by 33%. Furthermore, according to the references, carbon emissions decreased by more than 93%, which is achievable using Chemical looping combustion.

Keywords

Main Subjects


[1] Adánez J., Abad A., Mendiara T., Gayán P., De Diego L.F., García-Labiano F., Chemical Looping Combustion
of Solid Fuels
, Progress in Energy and Combustion Science, 65: 6-66 (2018).
[2] Adanez J., Abad A., Garcia-Labiano F., Gayan P., Luis F., Progress in Chemical-Looping Combustion and Reforming Technologies, Progress in Energy and Combustion Science, 38(2): 215-282 (2012).
[3] Erdogan A., Yuksel Orhan O., CO2 Utilization: Developments in Conversion Processes, Petroleum, 3(1):109-126 (2017).
[4] Pérez-Fortes M., Schöneberger JC., Boulamanti A., Harrison G., Tzimas E., Formic Acid Synthesis Using CO2 as Raw Material: Techno-Economic and Environmental Evaluation and Market Potential, International Journal of Hydrogen Energy, 41(37): 16444-16462 (2016).
[5] Surywanshi G.D., Pillai B.B., Patnaikuni V.S., Vooradi R., Anne S.B., Formic Acid Synthesis– A Case Study of CO2 Utilization from Coal Direct Chemical Looping Combustion Power Plant, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 8: 1-6 (2019).
[6] Chauvy R., Meunier N., Thomas D., De Weireld G., Selecting Emerging CO2 Utilization Products for Short-to Mid-Term Deployment, Applied Energy, 236: 662-680 (2019).
[7] Cormos A.M., Cormos C.C., Investigation of Hydrogen and Power Co-Generation Based on Direct Coal Chemical Looping Systems, International Journal of Hydrogen Energy, 39(5): 2067-2077 (2014).
[8] Cormos C.C., Hydrogen Production from Fossil Fuels with Carbon Capture and Storage Based on Chemical Looping Systems, International Journal of Hydrogen Energy, 36(10): 5960-5971 (2011).
[9] Demirel Y., Matzen M., Winters C., Gao X., Capturing and Using CO2 as Feedstock with Chemical Looping and Hydrothermal Technologies, International Journal of Energy Research, 39(8):1011-1047 (2015).
[10] Irabien A., Alvarez-Guerra M., Albo J., Dominguez-Ramos A., Electrochemical Conversion of CO2 to Value-Added Products, In Electrochemical Water and Wastewater Treatment, 29-59 (2018).
[11] Proietto F., Schiavo B., Galia A., Scialdone O., Electrochemical Conversion of CO2 to HCOOH at Tin Cathode in a Pressurized Undivided Filter-Press Cell, Electrochimica Acta, 277: 30-40 (2018).
[12] Norouzi N., Fani M., Environmental Sustainability and Coal: The Role of Financial Development and Globalization in South Africa, Iranian (Iranica) Journal of Energy & Environment, 12(1): 68-80 (2021).
[14] Norouzi N., Kalantari G., An Overview on Sustainable Hydrogen Supply Chain Using the Carbon Dioxide Utilization System of Formic Acid, Asian Journal of Green Chemistry, 5(1): 71-90 (2021).
[15] Norouzi N., Shiva N., Khajehpour H., Optimization of Energy Consumption in the Process of Dehumidification of Natural Gas, Biointerface Res. Appl. Chem., 11(6):14634-14639 (2021).
[16] Norouzi N., Talebi S., Fani M., Khajehpour H., Exergy and Exergoeconomic Analysis of Hydrogen and Power Co-Generation Using an HTR Plant, Nuclear Engineering and Technology. (2021). [in Press]
[17] Norouzi N, Talebi S, Shahbazi A. An Overview on the Carbon Capture Technologies with an Approach of Green Coal Production Study, Chemical Review and Letters, 3(2):65-78 (2020).
[18] Norouzi N, Choupanpiesheh S, Talebi S, Khajehpour H., Exergoenvironmental and Exergoeconomic Modelling and Assessment in the Complex Energy Systems, Iran. J. Chem. and Chem. Eng. (IJCCE), 41(3): 989-1002 (2022).
[19] Khajehpour H., Norouzi N., Fani M., An Exergetic Model for the Ambient Air Temperature Impacts on the Combined Power Plants and its Management Using the Genetic Algorithm, International Journal of Air-Conditioning and Refrigeration, 29(01): 2150008 (2021).
[21] Khajehpour H., Norouzi N., Shiva N., Mahmoodi Folourdi R., Hashemi Bahremani E., Exergy Analysis and Optimization of Natural Gas Liquids Recovery Unit, International Journal of Air-Conditioning and Refrigeration, 29:   -    (2020).
[23] Norouzi N., Talebi S., Exergy and Energy Analysis of Effective Utilization of Carbon Dioxide in the Gas-to-Methanol Process, Iranian Journal of Hydrogen & Fuel Cell, 7(1): 13-31 (2020).
[24] Norouzi N., The Pahlev Reliability Index: A Measurement for the Resilience of Power Generation Technologies Versus Climate Change, Nuclear Engineering and Technology, 53(5):1658-1663 (2021).
[25] Norouzi N., 4E Analysis of a Fuel Cell and Gas Turbine Hybrid Energy System, Biointerface Res. Appl. Chem., 11: 7568-7579 (2021).
[26] Fani M., Norouzi N., Ramezani M., Energy, Exergy, and Exergoeconomic Analysis of Solar Thermal Power Plant Hybrid with Designed PCM Storage, International Journal of Air-Conditioning and Refrigeration, 28(04): 2050030 (2020).
[27] Norouzi N., Talebi S., Najafi P., Thermal-Hydraulic Efficiency of A Modular Reactor Power Plant by Using The Second Law of Thermodynamic, Annals of Nuclear Energy, 151: 107936 (2021).
[28] Norouzi N., Talebi S., Fabi M., Khajehpour H., Heavy Oil Thermal Conversion and Refinement to the Green Petroleum: A Petrochemical Refinement Plant Using the Sustainable Formic Acid for the Process, Biointerface Res. Appl. Chem., 10(5):6088-6100 (2020).
[29] Norouzi N., Kalantari G., Talebi S., Combination of Renewable Energy in the Refinery, with Carbon Emissions Approach, Biointerface Res. Appl. Chem., 10(4): 5780-5786 (2020).
[30] Norouzi N., Talebi S., An Overview on the Green Petroleum Production, Chemical Review and Letters., 3(1): 38-52 (2020).
[31] Norouzi N., 4E Analysis and Design of a Combined Cycle with a Geothermal Condensing System in Iranian Moghan Diesel Power Plant, International Journal of Air-Conditioning and Refrigeration, 28(03): 2050022 (2020).
[33] Fan L.S., Li F., Chemical Looping Technology and its Fossil Energy Conversion Applications, Industrial & Engineering Chemistry Research, 49(21):10200- 10211 (2010).
[34] Adánez J., Abad A., Chemical-Looping Combustion: Status and Research Needs, Proceedings of the Combustion Institute, 37(4): 4303-43017 (2019).
[35] Gnanapragasam N.V., Reddy B.V., Rosen M.A., Hydrogen Production from Coal Using Coal Direct Chemical Looping and Syngas Chemical Looping Combustion Systems: Assessment of System Operation and Resource Requirements, International Journal of Hydrogen Energy, 34(6): 2606-2615 (2009).
[37] He F., Galinsky N., Li F., Chemical Looping Gasification of Solid Fuels Using Bimetallic Oxygen Carrier Particles–Feasibility Assessment and Process Simulations, International Journal of Hydrogen Energy., 38(19): 7839-7854 (2013).
[38] Gunukula S., Pendse H.P., DeSisto W.J., Wheeler M.C., Heuristics to Guide the Development of Sustainable, Biomass-Derived, Platform Chemical Derivatives, ACS Sustainable Chemistry & Engineering, 6(4): 5533-5539 (2018).
[39] Karmakar S., Kolar A.K., Thermodynamic Analysis of High‐Ash Coal‐Fired Power Plant with Carbon Dioxide Capture, International Journal of Energy Research, 37(6): 522-534 (2013).
[40] Chandrika V.S., Karthick A., Kumar N.M., Kumar P.M., Stalin B., Ravichandran M., Experimental Analysis of Solar Concrete Collector for Residential Buildings, International Journal of Green Energy, 18(6): 615-623 (2021).
[41] Koytsoumpa E.I., Bergins C., Kakaras E., The CO2 Economy: Review of CO2 Capture and Reuse Technologies, The Journal of Supercritical Fluids, 132: 3-16 (2018).
[42] Li B., Duan Y., Luebke D., Morreale B., Advances in CO2 Capture Technology: A Patent Review, Applied Energy, 102:1439-1447 (2013).
[43] Luo M., Yi Y., Wang S., Wang Z., Du M., Pan J., Wang Q., Review of Hydrogen Production Using Chemical-Looping Technology, Renewable and Sustainable Energy Reviews, 81: 3186-3214 (2018).
[44] Luo S., Bayham S., Zeng L., McGiveron O., Chung E., Majumder A., Fan L.S., Conversion of Metallurgical Coke and Coal Using a Coal Direct Chemical Looping (CDCL) Moving Bed Reactor, Applied Energy, 118: 300-308 (2014).
[46] Matzen M., Pinkerton J., Wang X., Demirel Y., Use of Natural Ores as Oxygen Carriers in Chemical Looping Combustion: A Review, International Journal of Greenhouse Gas Control, 65: 1-4 (2017).
[49] Ozcan H., Dincer I., Thermodynamic Analysis of a Combined Chemical Looping-Based Trigeneration System, Energy Conversion and Management, 85: 477-487 (2014).
[50] Pérez-Fortes M., Schöneberger J.C., Boulamanti A., Harrison G., Tzimas E., Formic Acid Synthesis Using CO2 as Raw Material: Techno-Economic and Environmental Evaluation and Market Potential, International Journal of Hydrogen Energy, 41(37): 16444-16462 (2016).
[51] Pillai B.B., Surywanshi G.D., Patnaikuni V.S., Anne S.B., Vooradi R., Performance Analysis of a Double Calcium Looping‐Integrated Biomass‐Fired Power Plant: Exploring a Carbon Reduction Opportunity, International Journal of Energy Research, 43(10): 5301-5318 (2019).
[53] Spallina V., Romano M.C., Chiesa P., Gallucci F., van Sint Annaland M., Lozza G., Integration of Coal Gasification and Packed Bed CLC for High Efficiency and Near-Zero Emission Power Generation, International Journal of Greenhouse Gas Control, 27:28-41(2014).
[54] Suresh M.V., Reddy K.S., Kolar A.K., 3‐E analysis of Advanced Power Plants Based on High Ash Coal, International Journal of Energy Research, 34(8): 716-735 (2010).
[55] Wang K., Tian X., Zhao H., Sulfur Behavior in Chemical-Looping Combustion Using a Copper Ore Oxygen Carrier, Applied Energy, 166: 84-95 (2016).
[56] Wang X., Demirel Y., Feasibility of Power and Methanol Production by an Entrained-Flow Coal Gasification System, Energy & Fuels, 32(7): 7595-7610 (2018).
[57] Yan J., Zhang Z., Carbon Capture, Utilization and Storage (CCUS), Applied Energy, 235: 1289-1299 (2019).
[58] Zeng L., He F., Li F., Fan L.S., Coal-Direct Chemical Looping Gasification for Hydrogen Production: Reactor Modeling and Process Simulation, Energy & Fuels, 26(6): 3680-3690 (2012).
[60] Koerich D.M., Lopes G.C., Rosa L.M., Numerical Study on the Hydrodynamics of a Fluidized-Bed of Bioparticles in Tapered Bioreactors with Square Shape Cross-Section, Brazilian Journal of Chemical Engineering, 37(1): 101-115 (2020).
[62] Acar C., Dincer I., Naterer GF. Review of Photocatalytic Water‐Splitting Methods for Sustainable Hydrogen Production, International Journal of Energy Research, 40(11):1449-1473 (2016).
[63] El-Emam R.S., Dincer I., Naterer G.F., Energy and Exergy Analyses of an Integrated SOFC and Coal Gasification System, International Journal of Hydrogen Energy, 37(2): 1689-1697 (2012).
[64] Dincer I., Acar C., A Review on Clean Energy Solutions for Better Sustainability, International Journal of Energy Research, 39(5): 585-606 (2015).
[65] Soltani R., Rosen M.A., Dincer I., Assessment of CO2 Capture Options from Various Points in Steam Methane Reforming for Hydrogen Production, International Journal of Hydrogen Energy. 39(35): 20266-20275 (2014).
[66] Ramezani F., Razmgir M., Tanha K., Nasirinezhad F., Neshasteriz A., Bahrami-Ahmadi A., Hamblin M.R., Janzadeh A., Photobiomodulation for Spinal Cord Injury: A Systematic Review and Meta-Analysis, Physiology & Behavior, 224:112977 (2020).
[67] Granovskii M., Dincer I., Rosen M.A., Economic and Environmental Comparison of Conventional, Hybrid, Electric and Hydrogen Fuel Cell Vehicles, Journal of Power Sources, 159(2): 1186-1193 (2006).
[68] Granovskii M., Dincer I., Rosen M.A., Greenhouse Gas Emissions Reduction by Use of Wind and Solar Energies for Hydrogen and Electricity Production: Economic Factors, International Journal of Hydrogen Energy, 32(8): 927-931 (2007).
[69] Kalinci Y., Hepbasli A., Dincer I., Techno-Economic Analysis of a Stand-Alone Hybrid Renewable Energy System with Hydrogen Production and Storage Options, International Journal of Hydrogen Energy, 40(24): 7652-7664 (2015).
[70] Tashakori-Miyanroudi M., Rakhshan K., Ramez M., Asgarian S., Janzadeh A., Azizi Y., Seifalian A., Ramezani F., Conductive Carbon Nanofibers Incorporated into Collagen Bio-Scaffold Assists Myocardial Injury Repair, International Journal of Biological Macromolecules, 163: 1136-1146 (2020).
[71] Dincer I, Acar C., Review and Evaluation of Hydrogen Production Methods for Better Sustainability, International Journal of Hydrogen Energy. 40(34): 11094-11111 (2015).
[72] Acar C., Dincer I., Comparative Assessment of Hydrogen Production Methods from Renewable and Non-Renewable Sources, International Journal of Hydrogen Energy, 39(1): 1-2 (2014).
[73] Naterer G., Suppiah S., Lewis M., Gabriel K., Dincer I., Rosen M.A., Fowler M., Rizvi G., Easton E.B., Ikeda B.M., Kaye M.H., Recent Canadian advances in Nuclear-Based Hydrogen Production and the Thermochemical Cu–Cl Cycle, International Journal of Hydrogen Energy, 34(7): 2901-2917 (2009).
[74] Cetinkaya E., Dincer I., Naterer G.F., Life Cycle Assessment of Various Hydrogen Production Methods, International Journal of Hydrogen Energy, 37(3): 2071-2080 (2012).
[75] Midilli A., Ay M., Dincer I., Rosen M.A., On Hydrogen and Hydrogen Energy Strategies: I: Current Status and Needs, Renewable and Sustainable Energy Reviews, 9(3): 255-271 (2005).
[76] Farsi A., Dincer I., Naterer G.F., Exergo‐Economic Assessment by a Specific Exergy Costing Method for an Experimental Thermochemical Hydrogen Production System, International Journal of Energy Research, (2021). [Article in Press]
[77] Dincer I., Technical, Environmental and Exergetic Aspects of Hydrogen Energy Systems, International Journal of Hydrogen Energy, 27(3): 265-285 (2002).
[78] Vahed M., Ramezani F., Tafakori V., Mirbagheri V.S., Najafi A., Ahmadian G., Molecular Dynamics Simulation and Experimental Study of the Surface-Display of SPA Protein via Lpp-OmpA System for Screening of IgG, AMB Express, 10(1): 1-9 (2020).
[79] Cohce M.K., Dincer I., Rosen M.A., Thermodynamic Analysis of Hydrogen Production from Biomass Gasification, International Journal of Hydrogen Energy, 35(10): 4970-4980 (2010).
[80] Kalinci Y., Hepbasli A., Dincer I., Biomass-Based Hydrogen Production: A Review and Analysis, International Journal of Hydrogen Energy, 34(21): 8799-8817 (2009).
[81] Vessally E., Mohammadi S., Abdoli M., Hosseinian A., Ojaghloo P., Convenient And Robust Metal-Free Synthesis of Benzazole-2-ones Through the Reaction of Aniline Derivatives and Sodium Cyanate in Aqueous Medium, Iran. J. Chem. Chem. Eng. (IJCCE), 39(5): 11-19 (2020).‏
[82] Gharibzadeh F., Vessally E., Edjlali L., Es'haghi M., Mohammadi R., A DFT Study on Sumanene, Corannulene and Nanosheet as the Anodes in Li−Ion Batteries, Iran. J. Chem. Chem. Eng. (IJCCE), 39: 51-62 (2020).
[84] Vessally, E., Hosseinian, A., A Computational Study on the Some Small Graphene-Like Nanostructures as the Anodes in Na−Ion Batteries, Iran. J. Chem. Chem. Eng. (IJCCE), 40: 691-703 (2021). 
[85] Hashemzadeh B., Edjlali L., Delir Kheirollahi Nezhad P., Vessally E., A DFT Studies on a Potential Anode Compound for Li-Ion Batteries: Hexa-Cata-Hexabenzocoronene Nanographen, Chem. Rev. Lett., 4: 232-238 (2021).
[86] Vessally E., Farajzadeh P., Najafi E., Possible Sensing Ability of Boron Nitride Nanosheet and its Al– and Si–Doped Derivatives for Methimazole Drug by Computational Study, Iran. J. Chem. Chem. Eng. (IJCCE), 40(4): 1001-1011 (2021).
[87] Majedi S., Sreerama L., Vessally E., Behmagham F., Metal-Free Regioselective Thiocyanation of (Hetero) Aromatic C-H Bonds using Ammonium Thiocyanate: An Overview, J. Chem. Lett., 1: 25-31 (2020).
[89] Salehi N., Vessally E., Edjlali L., Alkorta I., Eshaghi M., Nan@Tetracyanoethylene (n=1-4) Systems: Sodium salt vs Sodium Electride, Chem. Rev. Lett., 3: 207-217 (2020).
[90] Soleimani-Amiri S., Asadbeigi N., Badragheh S., A Theoretical Approach to New Triplet and Quintet (nitrenoethynyl) alkylmethylenes,(nitrenoethynyl) alkylsilylenes,(nitrenoethynyl) alkylgermylenes, Iran. J. Chem. Chem. Eng. (IJCCE), 39(4): 39-52 (2020).
[91] Sreerama L., Vessally E., Behmagham F., Oxidative Lactamization of Amino Alcohols: An Overview, J. Chem. Lett., 1: 9-18 (2020).
[93] Vessally E., Musavi M., Poor Heravi M.R., A density Functional Theory Study of Adsorption Ethionamide on the Surface of the Pristine, Si and Ga and Al-doped Graphene, Iran. J. Chem. Chem. Eng. (IJCCE), 40(6): 1720-1736 (2021).
[96] Vessally, E., Siadati, S. A., Hosseinian, A., Edjlali, L. Selective Sensing of Ozone and the Chemically Active Gaseous Species of the Troposphere by Using the C20 Fullerene and Graphene Segment, Talanta, 162: 505-510 (2017).
[97] Rabipour S., Mahmood E.A., Afsharkhas M., Abbasi V., A Review on the Cannabinoids Impacts on Psychiatric Disorders, Chem. Rev. Lett., 5: 234-240 (2022).
[98] Siadati, S. A., Vessally, E., Hosseinian, A., Edjlali, L. Possibility of Sensing, Adsorbing, and Destructing the Tabun-2D-skeletal (Tabun Nerve Agent) by C20 Fullerene and Its Boron and Nitrogen  Doped Derivatives. Synthetic Metals, 220: 606-611 (2016).‏
[99] Rabipour, S., Mahmood, E. A., Afsharkhas, M., Medicinal Use of Marijuana and Its Impacts on Respiratory System, J. Chem. Lett., 3: 86-94 (2022).
[100] Cao Y., Soleimani-Amiri S., Ahmadi R., Issakhov A., Ebadi A.G., Vessally E., Alkoxysulfenylation of Alkenes: Development and Recent Advances, RSC Advances, 11: 32513-32525 (2021).
[101] Vessally E., Soleimani-Amiri S., Hosseinian A., Edjlali L., Babazadeh M., Chemical Fixation of CO2 to 2-aminobenzonitriles: A straightforward Route to Quinazoline-2, 4 (1H, 3H)-diones with Green and Sustainable Chemistry Perspectives, J. CO2 Util., 21: 342-352 (2017).
[102] Arshadi S., Vessally E., Hosseinian A., Soleimani-amiri S., Edjlali L., Three-component Coupling of CO2, Propargyl Alcohols, and Amines: an Environmentally Benign Access to Cyclic and Acyclic Carbamates (A Review), J. CO2 Util., 21: 108-118 (2017).
[103] Kassaee M.Z., Buazar F., Soleimani-Amiri S., Triplet Germylenes with Separable Minima at ab Initio and DFT Levels, Journal of Molecular Structure: THEOCHEM, 866(1-3): 52-57 (2008).
[104] Kassaee, M. Z., Aref Rad, H., Soleimani Amiri, S. Carbon–Nitrogen Nanorings and Nanoribbons: A Theoretical Approach for Altering the Ground States of Cyclacenes and Polyacenes, Monatshefte für Chemie-Chemical Monthly, 141(12): 1313-1319 (2010).
[105] Koohi, M., Soleimani Amiri, S., Haerizade, B. N., Substituent Effect on Structure, Stability, and Aromaticity of Novel BnNmC20–(n+ m) heterofullerenes, Journal of Physical Organic Chemistry, 30(11): e3682 (2017).
[107] Soleimani‐Amiri, S. Singlet and Triplet Cyclonona‐3, 5, 7‐trienylidenes and Their α, ά‐halogenated Derivatives at DFT. Journal of Physical Organic Chemistry, 33(2): e4018 (2020).
[108] Soleimani-Amiri S., Asadbeigi N., Badragheh S., A Theoretical Approach to New Triplet and Quintet (nitrenoethynyl) alkylmethylenes,(nitrenoethynyl) alkylsilylenes,(nitrenoethynyl) alkylgermylenes. Iran. J. Chem. Chem. Eng. (IJCCE), 39(4): 39-52 (2020).
[110] Poor Heravi M.R., Azizi B., Abdulkareem Mahmood E., Ebadi A.G., Ansari M.J., Soleimani-Amiri S., Molecular Simulation of the Paracetamol Drug Interaction with Pt-decorated BC3 Graphene-Like Nanosheet, Molecular Simulation, 48(6): 517-525 (2022).
[111] Ghazvini M., Sheikholeslami-Farahani F., Soleimani-Amiri S., Salimifard M., Rostamian R., Green Synthesis of Pyrido [2, 1-a] isoquinolines and Pyrido [1, 2-a] Quinolines by Using ZnO Nanoparticles, Synlett, 29(04): 493-496 (2018).
[112] Soleimani‐Amiri S., Shafaei F., Varasteh Moradi A., Gholami‐Orimi F., Rostami Z., A Novel Synthesis and Antioxidant Evaluation of Functionalized [1, 3]‐Oxazoles Using Fe3O4‐Magnetic Nanoparticles, Journal of Heterocyclic Chemistry, 56(10): 2744-2752 (2019).
[113] Soleimani Amiri S., Green production and Antioxidant Activity Study of New Pyrrolo [2, 1‐a] Isoquinolines, J. Heterocyclic Chem., 57(11): 4057-4069 (2020).
[115] Taheri Hatkehlouei S.F., Mirza B., Soleimani-Amiri S., Solvent-Free One-Pot Synthesis of Diverse Dihydropyrimidinones/Tetrahydropyrimidinones Using Biginelli Reaction Catalyzed by Fe3O4@ C@ OSO3H, Polycyclic Aromat. Compd., 42(4): 1341-1357 (2022).
[120] Khoshtarkib Z., Ebadi A., Alizadeh R., Ahmadi R., Amani V., Dichloridobis (phenanthridine-κN) Zinc (II), Acta Crystallog. E, 65(7): m739-m740 (2009).
[123] Iji M., Dass P.M., Shalbugau K.W., Penuel B.L., Synthesis and Characterization of Heterogeneous Catalysts from Magnetic Sand and Kaolin, Journal of Chemistry Letters, 1(3): 139-142 (2020)
[124] Ahmadi R., Khalighi A., Kalateh K., Amani V., Khavasi H. R., Catena-Poly [[(5, 5′-dimethyl-2, 2′-bipyridine-κ2N, N′) cadmium (II)]-di-μ-chlorido]. Acta Crystallog. E, 64(10): m1233-m1233 (2008).
[126] Soleimani‐Amiri S., Arabkhazaeli M., Hossaini Z., Afrashteh S., Eslami A.A., Synthesis of Chromene Derivatives via Three‐Component Reaction of 4‐hydroxycumarin Catalyzed by Magnetic Fe3O4 Nanoparticles in Water, Journal of Heterocyclic Chemistry, 55(1): 209-213 (2018).
[127] Soleimani‐Amiri S., Hossaini Z., Arabkhazaeli M., Karami H., Afshari Sharif Abad S. Green Synthesis of Pyrimido‐Isoquinolines and Pyrimido‐Quinoline Using ZnO Nanorods as an Efficient Catalyst: Study of Antioxidant Activity, Journal of the Chinese Chemical Society, 66(4): 438-445 (2019).
[130] Karbakhshzadeh A., Majedi S., Abbasi V., Computational Investigation on Interaction Between Graphene Nanostructure BC3 and Rimantadine Drug, J. Chem. Lett., 3: 108-113 (2022).
[131] Norouzi N., Ebadi A. G., Bozorgian A., Vessally E., Hoseyni S. J.,  Energy and Exergy Analysis of Internal Combustion Engine Performance of Spark Ignition for Gasoline, Methane, and Hydrogen Fuels, Iran. J. Chem. Chem. Eng. (IJCCE)., 40(6): 1906-1930 (2021).
[132] Norouzi N., Ebadi A.D., Bozorgian A., Hoseyni S.J., Vessally E., Cogeneration System of Power, Cooling, and Hydrogen from Geothermal Energy: An Exergy Approach, Iran. J. Chem. Chem. Eng. (IJCCE), 41(2): 706-721 (2022).
[133] Rabipour S., Mahmood E. A., Afsharkhas M., Abbasi V., Cannabinoids Impact on Cognition: A Review from the Neurobiological Perspective, Chem. Rev. Lett., 6: 7-14 (2023).
 [134] Silas K., Musa Y.P., Habiba M.D., Effective Application of Jatropha Curcas Husk Activated ZnCl2, Chem. Rev. Lett., 5: 153-160 (2022).
[135] Khezri A., Edjlali L., Eshaghi M., Vardini M.T., Basharnavaz H., A Novel [3-(4-methoxyphenyl) isoxazole-5-yl]-methanol Compound: Synthesis, Chem. Rev. Lett., 5: 113-118 (2022).
[136] Hoseyni S.J., Manoochehri M., Asli M.D., Synthesis and Crystal Structure of Dibromido{[(2-Pyridyl) methyl](p-ethylphenyl)amine}Zinc, Chem. Rev. Lett., 5: 99-105 (2022).
[137] Kadhim M.M., Mahmood E.A., Abbasi V., Poor Heravi M.R., Habibzadeh S., Mohammadi-Aghdam S., Soleimani-Amiri S., Theoretical Investigation of the Titanium—Nitrogen Heterofullerenes Evolved from the Smallest Fullerene, J. Mol. Graph. Model., (2022).
[138] Porgar S., Rahmanian N., Phase Equilibrium for Hydrate Formation in the Methane and Ethane system and Effect of Inhibitors, Chem. Rev. Lett., 5: 2-11 (2022).
[139] Kadhim M.M., Mahmood E.A., Abbasi V., Poor Heravi M.R., Habibzadeh S., Mohammadi-Aghdam S., Shoaei S.M., Theoretical Investigation of the Titanium—Nitrogen Heterofullerenes Evolved from the Smallest Fullerene, J. Mol. Graph. Model., 117: 108269 (2022).
[140] Avşar C., Tümük D., Ertunç S., Gezerman A.O., A Review on Ammono-Carbonation Reactions: Focusing on the Merseburg Process, Chem. Rev. Lett., 5: 83-91 (2022).
[141] Rabipour, S., Mahmood, E., Ebadi, A., Bozorgian, A., Vessally, E., Asadi, Z., Afsharkhas, M., A Systematic Review of Therapeutic Potential of Illicit Drugs: A Narrative Overview of How Cannabinoids and Psychedelics Can be Used in Medicine, Iran. J. Chem. Chem. Eng. (IJCCE), 41(3): 722-752 (2022).