Roughcast Analysis as a New Method of Environmental Research

Document Type : Research Article

Authors

1 Department of Geology, Soil Science and Geoinformation, Maria Skłodowska-Curie University, 20-718 Lublin, POLAND

2 Polish Society of Geophysics, Department of Lublin, Maria Skłodowska-Curie University, 20-718 Lublin, POLAND

3 Institute of Earth and Environmental Sciences, Maria Skłodowska-Curie University, 20-718 Lublin, POLAND

Abstract

This study aims to show the purpose of roughcast analysis as a new useful tool for research of the condition of the environment. Samples of roughcast were collected from buildings in 6 different cities in Europe (Cracow, Lublin, Warsaw, Lviv, Monchegorsk, and Murmansk) and their compositions were examined with the scanning electron microscope, ICP-OAS, and ASA methods. Also, a binocular magnifier was used. The samples were investigated for heavy metals presence. The result shows that despite the deposition of particles being bigger on the horizontal surface, the vertical layer of the roughcast accumulates significant amounts of impurities and heavy metals. The composition and content of metals differ accordingly to automotive traffic nowadays and in the past, the existence of road hubs, industrial districts, and historical manufacturers. Samples from Cracow show high content of non-ferrous metals and nickel, whereas the content of copper was significantly higher in Monchegorsk. In Lublin and Lviv, their agricultural past contributed to significantly lower heavy metal content Determination of heavy metals contents in roughcast can be used to evaluate anthropogenic impact in the cities through the years and to help to protect cities’ populations from negative consequences of living in urban areas.

Keywords

Main Subjects


[1] Wahab N.A.A., Darus F.M., Isa N., Sumari S.M., Hanafti N.F.M., Heavy Metal Concentration of Settled Surface Dust in Residential Building,
The Malaysian Journal of Analytical Sciences
, 16(1): 18-23 (2012).
        DOI: 10.1007/s10653-020-00726-9(0123456789.
[3] Zgłobicki W., Telecka M., Skupiński S., Pasierbińska A., Kozieł M., Assessment of Heavy Metal Contamination Levels of Street Dust in the City of Lublin, E Poland, Environmental Earth Sciences, 77(23): 1-11 (2018).
        DOI: 10.1007/s12665-018-7969-2.
[4] Jeszke R. (edit.), “Climate for Poland - Poland for Climate 1988-2018-2050 IOŚ-PIB (2018).
[5] Grondys K., Kott I., Sukiennik K., Funkcjonowanie Polskich Miast w Dobie Zrównoważonego Rozwoju z Punktu Widzenia Transportu, Zeszyty Naukowe Politechniki Częstochowskiej. Zarządzanie 25(1): 237-245 (2017).
[6] https://powietrze.malopolska.pl/antysmogowa/krakow/.
[7]http://teatrnn.pl/leksykon/artykuly/przewodnik-po-lublinie-przemysl/#przystanek-1-fabryka-maszyn-rolniczych-i-odlewnia-zelaza-waclawa-moritza.
[8] Jędrak J., Konduracka E., Bandyda J.A., Dąbrowiecki P., Wpływ Zanieczyszczeń Powietrza n Zdrowie, Kraków (2019).
[9] https://smoglab.pl/smog-ukrainie-realizacji-polsko-ukrainskich-projektow-moze-tez-zyskac-polskie-powietrze/.
[10] Sówka I.M., Bezyk Y., Pachurka Ł., Analysis and Assessment of Air Quality in the Cities Area of Wrocław (Poland) and Lviv (Ukraine), Scientific Review  ̶  Engineering and Environmental Sciences 68: 178-192 (2015).
[11] Extracts from the “Socio-economic Strategy of Murmansk Region Till 2025”, Translation from Russian to English: Anna Trubkina, Finnbarents, (2011). / URL:http://www.barentsinfo.org/loader.aspx?id=db2be5c2-8ef4-43da-9b92-3c7a1c08655a.
[12] International Business Publications (IBP), “Russia-  Country Study Guide. Economy, Industry, Regional Development” vol. 2, Washington, D.C.: International Business Publications (2014)
[13] https://www.barentsinfo.fi/hotspots/Details.aspx?id=2.
[14] „Digital Nornickel. Sustainability Report”, Nornickel Group (2020).
[15] Leung A.O.W., Duzgoren-Aydin N.S., Cheung K.C., Wong M.H., Heavy Metal Concentrations of Surface Dust from E-Waste Recycling and Its Human Health Implications in Southeast China, Environ.Sci. Technol. 42: 2674-2680 (2008).
[16] Wilson, B., Pyatt, F.B., Heavy Metal Dispersion, Persistence and Bioaccumulation Around an Ancient Copper Mine Situated in Anglesey, UK. Ecotoxicology and Environmental Safety, 66: 224-231 (2007).
[17] Sharma R., Yadav A., Ramteke S., Patel K.S., Lata L., Huber M., Corns W.T., Martín-Ramos P., Heavy Metal Pollution in Surface Soil of Korba Basin, India, Journal of Hazardous Toxic and Radioactive Waste, 23(4): 1-7 (2019).
        DOI: 10.1061/(ASCE)HZ.2153-5515.0000460. 
[18] Patel K.S, Yadav A., Sahu Y.K., Lata L., Huber M., Corns W.T., Martín-Ramos P., Tree Bark as a Bioindicator for Arsenic and Heavy Metal Air Pollution in Rajnandgaon District, Chhattisgarh, India, Journal of Hazardous Toxic and Radioactive Waste, 24(1): 1-5 (2020).
        DOI: 10.1061/(ASCE)HZ.2153-5515.0000475.
[19] Yadav A., Sahu P.K., Patel K.S., Lata L., Huber M., Corns W.T., Allen J., Martín-Ramos P., Assessment of Arsenic and Heavy Metal Pollution in Chhattisgarh, India, Journal of Hazardous Toxic and Radioactive Waste, 24(1): 6-14 (2020).
        DOI: 10.1061/(ASCE)HZ.2153-5515.0000478.
        DOI 10.1016/j.scitotenv.2021.146081
         DOI 10.1016/j.chemosphere.2021.129656
[22] Behrooz R.D, Kaskaoutis D.G., Grivas G., Mihalopoulos N., Human Health Risk Assessment for Toxic Elements in the Extreme Ambient Dust Conditions Observed in Sistan, Iran. Chemosphere, 262: 127835 (2021).
        DOI 10.1016/j.chemosphere.2020.127835
        DOI: 10.1371/journal.pone.0242980
[24] Rahman M.S., Jolly Y.N., Akter S., Kamal N.A., Rahman R., Choudhury R., Begum B.A., Sources of Toxic Elements in Indoor Dust Sample at Export Processing Zone (EPZ) Area: Dhaka, Bangladesh; and their Impact on Human Health, Environmental Science and Pollution Research, 28: 39540–39557 (2021).
        DOI 10.1007/s11356-021-13167-3
[25] Kittel Ch. “Introduction to the Physics of a Solid Solution”  PWN Publ. (1999).
[26] Dereń J., Haber J., Pampuch R., “Chemistry of Solid Solution”, AGH Publ., Kraków 1(2): 368 (1971).
[27] B., Oszust K., Huber M., Blicharska E., Muraczyńska Kocjan R., “Application of Electron and Optical Microscopy in Biomedical Research”, Innovative Materials Forum, 165-166 (2013).
[28] Abadie M., Limam K., Allard F., Indoor Particle Pollution: Effect of Wall Textures on Particle Deposition, Building and Environment 36: 821-827 (2001).
[29] Chen J., Dong L., Deng B., A Study on Heavy Metal Partitioning in Sediments from Poyang Lake in China, Hydrobiologia 176/177: 159-170 (1989).
[30] Lou X., Bing H., Luo Z., Wang Y., Jin L., Impacts of Atmospheric Particulate Matter Pollution on Environmental Biogeochemistry of Trace Metals in Soil-Plan System: A Review, Environmental Pollution 255: 113-138 (2019).
[31] Luo X.S., Yu S., Zhu Y.G., Li X.D., Trace Metal Contamination in Urban Soils of China, Sci. Total Environ. 421: 17-30 (2012).
[32] Ahmed F., Ishiga H., Trace Metal Concentrations in Street Dust of Dhaka City, Bangladesh, Atmos. Environ, 40: 3835-3844 (2006).
[33] Li X.D., Lee S., Wong S., Shi W., Thornton I., The Study of Metal Contamination in Urban Soils of Hongkong Using a GIS-based Approach, Environmental Pollution, 129: 113–124 (2004).
[34] Li X.D., Poon C., Liu P.S., Heavy Metal Contamination of Urban Soils and Street Dust in Hong Kong, Applied Geochemistry 16: 1361–1368 (2001).
[35] Weckwerth G., Verification of Traffic Emitted Aerosol Components in the Ambient Air of Cologne (Germany), Atmospheric Environment, 35: 5525-5536 (2001).
[36] Slukovskaya M.V., Vasenev V.I., Ivashchenko K.V., Morev D.V., Drogobuzhskaya S.V.,  Ivanova L.A., Kremenetskaya I.P., Technosols on Mining Wastes in the Subarctic: Efficiency of Remediation under Cu-Ni Atmospheric Pollution, International Soil and Water Conservation Research, 7: 297-307(2019).
[37] European Commission, “Ambient air pollution by As, Cd and Ni compounds. Position paper. Final version, European Commission DG Environment (2000).
[39] Reimann C., Kashulina G., de Caritat P., Niskavaara H., Multi-Element, Multi-Medium Regional Geochemistry in the European Arctic: Element Concentration, Variation and Correlation, Applied Geochemistry, 16: 759-780 (2001).
[40] Rossini Oliva S., Fernandez Espinoza A.J., Monitoring of Heavy Metal in Topsoils, Atmospheric Particles and Plant Leaves to Identify Possible Contamination Sources, Microchemical Journal, 86:131-139 (2007).
[41] Chen W., Qu Y., Xu Z., He F., Chen Z., Huang S., Heavy metal (Cu, Cd, Pb, Cr) Washing from River Sediment Using Biosurfactant Rhamnolipid, Environ. Sci. Pollut. Res., 24: 16344-16350 (2017).
[42] Huang J., Huang R., Jiao J., Chen K., Speciation and Mobility of Heavy Metals in Mud in Coastal Reclamation Areas in Shenzhen, China, Environ. Geol., 53: 221-228 (2007).
[43] Tessier A., Campbell P., Bisson M., Sequential Extraction Procedure for the Speciation of Particulate Trace Metals, Anal. Chem., 51(7): 844-851 (1979).
[44] Huber M., Menshakova M.Y., Chmiel S., Zhigunova G.V, Dębicki R., Iakovleva O.A., Heavy Metal Composition in the Plantago Major L. from the Center of the Murmansk City, Kola Peninsula, Russia, European Journal of Biological Research, 8(4): 214-223 (2018).
[45] Claypool G.E., Holser W.T., Kaplan I.R., Sakai H., Zak I., The Age Curves of Sulfur and Oxygen Isotopes in Marine Sulfate and Their Mutual Interpretations, Chem. Geol., 28:199-260 (1980).