Numerical Implementation of Electrokinetics for Removal of Heavy Metals from Granite Waste

Document Type : Research Article

Authors

Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be a University), Green Fields, Vaddeswaram-522502, Guntur, Andhra Pradesh, INDIA

Abstract

The goal of the study is to incorporate the electrokinetic models and estimate the remediation time for maximum removal of Heavy Metals (HMs) from polluted soils. Most of the conventional electrokinetic technologies have not considered the electrokinetic models in the removal of HMs from polluted soils. We addressed this problem and incorporated the electrokinetic and applied it to the experimental ElectroKinetic Soil Remediation (EKSR) process particularly, to extract the numerical data between the removal performance of HMs versus remediation time with the help of the MATLAB program. In the experimental study, chelating chemical agents (citric acid and ethylenediaminetetraacetic acid (EDTA)) were used in EKSR process under a constant voltage gradient (2V/cm) for the removal of Chromium (Cr), Cobalt (Co), Nickel (Ni), Copper (Cu), Zinc (Zn) and Manganese (Mn) ions from granite dump soil. We experimentally investigated that the removal performance of HMs in chelating agents enhanced EKSR was about 6 to7 times more than when unenhanced in 20 days of treatment. Furthermore, we estimated the remediation time of about 52 to 54 days for the complete removal of HMs using electrokinetic models. The study may be useful for the researcher particularly, in soil decontamination studies to overcome the uncertainty in the process optimization and scale up the process to the pilot plant and field level. 

Keywords

Main Subjects


[1] Reddy G.K., Yarrakula K. Geo-Chemical Exploration of Granite Mining Waste Using XRD, SEM/EDS and AAS Analysis, Iran. J. Chem. Chem. Eng.(IJCCE)., 38(2): 215–228 (2019). .
[2] Reddy G.K., Yarrakula K., Vijaya Lakshmi U. Reducing Agents Enhanced Electrokinetic Soil Remediation (EKSR) for Heavy Metal Contaminated Soil, Iran. J. Chem. Chem. Eng.(IJCCE)., 38(3):183–199 (2019).
[3] Santhosh C., Kishore K.H., Lakshmi G.P., Kushwanth G., Dharma P.R.K., Ravindran R.S.E., Cheerala S.V., Kumar M.R. Detection of Heavy Metal Ions using Star-Shaped Microfluidic Channel, Int. J. of Eme. Tren. in Engg. Res., 7: 768–771 (2019).
[4] Satish Kumar M., Asadi S.S., Vutukuru S.S. Assessment of Heavy Metal Concentration in Ground Water by Using Remote Sensing and GIS, Int. J. Civ. Eng. Technol., 8: 1562–1573(2017).
[5] Monica C.L., Raju M.V., Kumar D.V., Babu S.R., Asadi S., Assessment of Heavy Metal Concentrations and Suitability Study of Ground Water (bore wells) Quality for Construction Purpose: A Model Study, Int. J. Civ. Eng. Technol., 9: 1273-1282 (2018).
[6] Asadi S.S., Lahari K., Sai Madhulika K., Analysis of Soil Quality for Environmental Impact Assessment -a Model Study, Int. J. Civ. Eng. Technol., 8: 798–805 (2017).
[7] Diva N., Karim Z., Farshad T., Mohammad Y. Removal of Cd 2+ from Aqueous Solution by Nickel Oxide / CNT Nanocomposites, Iran. J. Chem. Chem. Eng.(IJCCE)., 38(1): 141-154 (2019).
[8] Sanchooli Moghaddam M., Rahdar S., Taghavi M. Cadmium Removal from Aqueous Solutions Using Saxaul Tree Ash, Iran. J. Chem. Chem. Eng. (IJCCE), 35: 45-52 (2016).
[9] Haq Nawaz B., Rubina K., Muhammad Asif H., Biosorption of Pb(II) and Co(II) on Red Rose Waste Biomass, Iran. J. Chem. Chem. Eng. (IJCCE), 30: 81–88 (2011).
[10] Koteswara Reddy G., Kiran Y. A Theoretical Mechanism in the Degradation of Polyolefin Plastic Waste Using Phytochemical Oxidation Process,  J. Solid Waste Technol. Manag., 45: 468-477 (2019).
[11] Aravind C., Chanakya K., Mahindra K., Removal of Heavy Metals from Industrial Waste Water Using Coconut Coir, Int. J. Civ. Eng. Technol., 8: 1869–1871 (2017).
[12] Pratapa Reddy Y., Narayana K.L., Kedar Mallik M. Electro-Chemical Behaviour of Different Metals in Sodium Chloride Solution, Int. J. Emerg. Trends Eng. Res., 7: 715-719 (2019).  
[13] Suresh G., Narayana K.L., Mallik M.K., Srinivas V., Reddy G.J., Gurappa I., Electro Chemical Behaviour of Lens TM Deposited Co-Cr-W Alloy for Bio-Medical Applications, Int. J. Mech. Prod. Eng. Res. Dev., 2018: 41-52 (2018).
[14] Sivapullaiah P.V., Nagendra Prakash B.S., Suma B.N. Electrokinetic Removal of Heavy Metals from Soil,  J. Electrochem. Sci. Eng., 5: 47-65 (2015).
[15] Pazos M., Plaza A., Martín M., Lobo M.C., The Impact of Electrokinetic Treatment on a Loamy- Sand Soil Properties, Chem. Eng. J., 183: 231-237 (2012).
[16] Reddy K.R., Electrokinetic Remediation of Soils at Complex Contaminated Sites, Coupled Phenom. Environ. Geotech., 131-147 (2013).
[18] Pedersen K. B., Kirkelund G. M., Ottosen L. M., Jensen P. E., Lejon T., Multivariate Methods for Evaluating the Efficiency of Electrodialytic Removal of Heavy Metals from Polluted Harbour Sediments, J. Hazard. Mater, 283:712-720 (2015).
[19] Bahemmat M., Farahbakhsh M., Kianirad M., Humic Substances-Enhanced Electroremediation of Heavy Metals Contaminated Soil, J. Hazard. Mater., 312: 307-318 (2016).
[20] Sun T. R., Ottosen L. M., Jensen P. E., Pulse Current Enhanced Electrodialytic Soil Remediation—Comparison of Different Pulse Frequencies, J. Hazard. Mater., 237-238: 299-306 (2012).
[21] Brosky R.T., Pamukcu S. " Role of DDL Processes During Electrolytic Reduction of Cu(II) in a Low Oxygen Environment, J. Hazard. Mater., 262: 878-882 (2013).
[22] Liu Y., Chen J., Cai Z., Chen R., Sun Q., Sun M., Removal of Copper and Nickel from Municipal Sludge Using an Improved Electrokinetic Process, Chem. Eng. J., 307:1008-1016 (2017).
[23] Masi M., Ceccarini A., Iannelli R,. Multispecies Reactive Transport Modelling of Electrokinetic Remediation of Harbour Sediments, J. Hazard. Mater,. 326: 187-196 (2017).
[24] Liu Y., Chen J., Cai Z., Chen R., Sun Q., Sun M., Removal of Copper and Nickel from Municipal Sludge Using an Improved Electrokinetic Process, Chem. Eng. J., 307: 1008–1016 (2017).
[25] Rosestolato D. Bagatin, R., Ferro S., Electrokinetic Remediation of Soils Polluted by Heavy Metals (Mercury in Particular), Chem. Eng. J., 264:16-23 (2015).
[27] Pedersen K.B., Kirkelund G.M., Ottosen L.M., Jensen P.E., Lejon T., Multivariate Methods for Evaluating the Efficiency of Electrodialytic Removal of Heavy Metals from Polluted Harbour Sediments, J. Hazard. Mater., 283:712-720 (2015).
[28] Lockwood C.L., Mortimer R.J.G., Stewart D.I., Mayes W.M., Peacock C.L., Polya D.A., Lythgoe P.R., Lehoux A.P., Gruiz K, Burke I.T., Mobilisation of Arsenic From Bauxite Residue (Red Mud) Affected Soils: Effect of pH and Redox Conditions, Appl. Geochemistry., 51: 268-277 (2014).
[29] Sanderson P., Naidu R., Bolan N., Lim J.E, Ok Y.S., Chemical Stabilisation of Lead in Shooting Range Soils with Phosphate and Magnesium Oxide: Synchrotron Investigation, J. Hazard. Mater., 299: 395–403 (2015).
[30] Shin S.Y., Park S.M., Baek K., Electrokinetic Removal of as from Soil Washing Residue, Water Air Soil Pollut., 227: 223 (2016).
[32] Tang W.W., Zeng G.M., Gong J.L., Liang J., Xu P., Zhang C., Bin Huang B., Impact of Humic/Fulvic Acid on the Removal of Heavy Metals from Aqueous Solutions Using Nanomaterials: A Review, Sci. Total Environ. ,468-469:1014-1027 (2014).
[33] Bahemmat M., Farahbakhsh M., Kianirad M., Humic Substances-Enhanced Electroremediation of Heavy Metals Contaminated Soil, J. Hazard. Mater., 312: 307-318 (2016).
[34] Masi M., Ceccarini A., Iannelli R., Multispecies Reactive Transport Modelling of Electrokinetic Remediation of Harbour Sediments, J. Hazard. Mater., 326: 187-196 (2017).
[35] Asadi A., Huat B.B.K., Nahazanan H., Keykhah H.A., Theory of Electroosmosis in Soil, Int. J. Electrochem. Sci., 8 :1016–1025 (2013).
[36] Ribeiro A.C.F., Lobo V.M.M., Oliveira L.R.C., Burrows H.D., Azevedo E.F.G., Fangaia S.I.G., Nicolau P.M.G. Guerra, Diffusion Coefficients of Chromium Chloride in Aqueous Solutions at 298.15 K and 303.15 K.,  F.A.D.R.A., Capillary O.C., An C., 1014-1017 (2005).
[37] Ribeiro A.C.F., Lobo V.M.M., Natividade J.J.S., Diffusion Coefficients in Aqueous Solutions of Cobalt Chloride at 298.15 K., J. Chem. Eng. Data.., 47:539-541 (2002).
[38] Ribeiro A.C.F., Gomes J.C.S., Barros M.C.F., Lobo V.M.M., Esteso M.A., Diffusion Coefficients of Nickel Chloride in Aqueous Solutions of Lactose
at T=298.15K and T=310.15K
" J. Chem. Thermodyn., 43: 270-274 (2011).
[39] Ribeiro A.C.F., Esteso M.A.,. Lobo V.M.M, Valente A.J.M., Simões S.M.N., Sobral A.J.F.N., Burrows H.D., Diffusion Coefficients of Copper Chloride in Aqueous Solutions at 298.15 K and 310.15 K., J. Chem. Eng. Data., 50:1986–1990 (2005).
[41] Patil S.F., Adhyapak N.G., Ujlambkar S.K., Diffusion Studies of Manganese Sulphate and Manganese Chloride in Agar Gel Medium, The Int. J. of App. Rad. and Isotopes, 33 (12): 1433-1437 (1982).
[42] Wu M.Z., Reynolds D.A., Prommer H., Fourie A., Thomas D.G., Numerical Evaluation of Voltage Gradient Constraints on Electrokinetic Injection of Amendments, Adv. Water Resour., 38: 60-69 (2012).
[43] Gomes H.I., Rodríguez-Maroto J.M., Ribeiro A.B., Pamukcu S., Dias-Ferreira C., Numerical Prediction of Diffusion and Electric Field-Induced Iron Nanoparticle Transport, Electrochim. Acta., 18: 15-12 (2015).