Preparation of Magnetic Cellulose Nanocrystal -Modified Diatomite for Removal of Methylene Blue from Aqueous Solutions

Document Type : Research Article

Authors

School of Chemical Engineering, Northeast Electric Power University, 168 Changchun Road, Jilin, 132102, P R. CHINA

Abstract

The Magnetic Cellulose Nanocrystal-Modified Diatomite (MCNCD) composite was synthesized and its adsorption performance for removal of Methylene Blue (MB) dye from aqueous solutions was investigated. The as-prepared MCNCD samples were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermal gravimetric analyzer, and vibration sample magnetometer, respectively. The adsorption parameters such as temperature, initial concentration of MB, adsorption time, and pH, were studied. The adsorption isotherms and kinetics were established. The results showed that adsorption isotherm and kinetics fitted well to the Langmuir model and pseudo-second-order model, respectively. Furthermore, the as-prepared MCNCD samples can be reused/ recycled after regeneration, with an adsorption capacity of 46.21 mg/g after six cycles.

Keywords

Main Subjects


[1] Manikandan P., Palanisamy P.N., Baskar R., Sakthisharmila P., Sivakumar P., A Comparative Study on the Competitiveness of Photo-assisted Chemical Oxidation (PACO) with Electrocoagulation (EC) for the Effective Decolorization of Reactive Blue Dye, Iran. J. Chem. Chem. Eng. (IJCCE), 36(1): 71-85 (2017).
[2] Bae W. Won H., Hwang B.Y., De Toledo R. A., Chung J.W., Kwon K., Shim H., Characterization of Refractory Matters in Dyeing Wastewater During a Full-Scale Fenton Process Following Pure-oxygen Activated Sludge Treatment, J. Hazard. Mater., 287: 421-428(2015).
[3] Eva Gnana Dhana Rani S., Ganesh Kumar A., Steplinpaulsevin S., Rajaram R., Tamil Selvan S., Sharmila Lydia L., Yong C., Survival Assessment of Simple Food Webs for Dye Wastewater after Photocatalytic Degradation Using SnO2/GO Nanocomposites under Sunlight Irradiation, Sci. total Environ., 721:137805(2020).
[4] Thu H. N., Takahiro W., Masashi H., Dausike S., Tjandra S., Takashi Y., Evaluation of a Combined Anaerobic Baffled Reactor–downflow Hanging Sponge Biosystem for Treatment of Synthetic Dyeing Wastewater, Environ. Technol. Inno., 19: 100913 (2020).
[7] Karim Z., Mathew A.P., Grahn M., Mouzon J., Oksman K., Nanoporous Membranes with Cellulose Nanocrystals as Functional Entity in Chitosan: Removal of Dyes from Water, Carbohyd. Polym., 112: 668-676(2014).
[8] Zeng G.Y., He Y., Zhan Y.Q., Zhang L., Pan Y., Zhang C.L., Yu Z.X., Novel Polyvinylidene Fluoride Nanofiltration Membrane Blended with Functionalized Halloysite Nanotubes for Dye and Heavy Metal Ions Removal, J. Hazard. Mater., 317(5): 60-72(2016).
[9] Sun M., Yan L.L., Zhang L.H., Song L.F., Guo J.G., Zhang H. F., New Insights into the Rapid Formation of Initial Membrane Fouling after In-Situ Cleaning in a Membrane Bioreactor, Process Biochem., 78: 108-113(2019).
[11] Singh S., Shang L.L., Srivastava V.C., Hiwarkar A. D., Comparative Study of Electrochemical Oxidation for Dye Degradation: Parametric Optimization and Mechanism Identification, J. Environ. Chem. Eng., 4(3): 2911-2921(2016).
[13] Li X., Hao H.M., Lang X.J., Molecular Design of Dye-TiO2 Assemblies for Green Light-induced Photocatalytic Selective Aerobic Oxidation of Amines, J. Colloid Interf. Sci., 581(Part B): 826-835(2021).
[14] Palukuru P.S., Devangam A.V., Behara D.K., N, S- Codoped TiO2/Fe2O3 Heterostructure Assemblies for Electrochemical Degradation of Crystal Violet Dye, Iran. J. Chem. Chem. Eng. (IJCCE), 39(2): 171-180 (2020).
[15] Mahmoodi N.M., Keshavarzi S., Ghezelbash M., Synthesis of Nanoparticle and Modelling of Its Photocatalytic Dye Degradation Ability from Colored Wastewater, J. Environ. Chem. Eng., 5(4): 3684-3689 (2017).
[16] Abharya A., Gholizadeh A., Structural, Optical and Magnetic Feature of Core-shell Nanostructured Fe3O4@GO in Photocatalytic Activity, Iran. J. Chem. Chem. Eng. (IJCCE), 39(2): 49-58 (2020).
[17] Yusan S., Korzhynbayeva K., Aytas S., Tazhibayeva S., Musabekov K., Preparation and Investigation of Structural Properties of Magnetic Diatomite Nanocomposites Formed with Different Iron Content, J. Alloy. Compd., 608: 8-13 (2014).
[18] Duan C., Meng X., Liu C. R., Lu W. L., Liu J., Dai L., Wang W.L., Zhao W., Xiong C.Y., Ni Y. H., Carbohydrates-rich Corncobs Supported Metal-organic Frameworks as Versatile Biosorbents for Dye Removal and Microbial Inactivation, Carbohyd. Polym., 222: 115042 (2019).
[20] Shahsavani S., Dehghani M., Shamsedini N., Removal of Direct Red 81 from Aqueous Solution Using an Acidic Soil Containing Iron (Cade Study of Lahijan Soil), Iran. J. Chem. Chem. Eng. (IJCCE), 38(2): 107-112 (2019).
[21] Wang G.H., Liu Q.J., Chang M.M., Jang J.Y., Sui W.J., Si C.L., Ni Y.H., Novel Fe3O4@Lignosulfonate /Phenolic Core-shell Microspheres for Highly Efficient Removal of Cationic Dyes from Aqueous Solution, Ind. Crop. Prod., 127: 110-118(2019).
[22] Zhang L. L., Lu H. L., Yu J., McSporran E., Khan A., Fan Y.M., Yang, Y.Q. Wang Z.G., Ni Y.H., Preparation of High-strength Sustainable Lignocellulose Gels and Their Applications for Antiultraviolet Weathering and Dye Removal, ACS Sustain. Chem. Eng., 7(3):2998-3009 (2019).
[24] Sun Z.M., Yao G.Y., Liu M.Y., Zheng S.L., In Situ Synthesis of Magnetic MnFe2O4/Diatomite Nanocomposite Adsorbent and Its Efficient Removal of Cationic Dyes, J. Taiwan Inst. Chem. E., 71: 501-509 (2017).
[25] Fayza B., Fouad B., Rima M., Youcef B., Water Adsorption and Antibacterial Activity Studies for Characterization of Ca-LTA Zeolite/Diatomite Adsorbents, Colloid Interface Sci., 35: 100233 (2020).
[26] Yu W.B., Deng L.L., Yuan P., Liu D., Yuan W.W., Liu P., He H.P., Li Z.H., Chen F.R., Surface Silylation of Natural Mesoporous/Macroporous Diatomite for Adsorption of Benzene, J. Colloid. Interface. Sci., 448: 545-552(2015).
[27] Jiang L., Liu L., Xiao S., Chen J., Preparation of a Novel Manganese Oxide-modified Diatomite and Its Aniline Removal Mechanism from Solution, Chem. Eng. J., 284: 609-619(2016).
[28] Chen Z.Y., Gao H.W., Yang J.X., PEI@Mg2SiO4: An Efficient Carbon Dioxide and Nitrophenol Compounds Adsorbing Material, RSC. Adv., 4: 33866-33873 (2014).
[29] Yu Y.C., Hu Z.J., Wang Y., Gao H.W., Magnetic SN-functionalized Diatomite for Effective Removals of Phenols, Int. J. Miner. Process., 162: 1-5(2017).
[30] Jahan M.S., Saeed A., He Z. B., Ni Y.H., Jute as Raw Material for the Preparation of Microcrystalline Cellulose, Cellulose, 18: 451-459(2011).
[31] Liu P., Oksman K., Mathew A. P., Surface Adsorption and Self-assembly of Cu(II) Ions on TEMPO-oxidized Cellulose Nanofibers in Aqueous Media, J. Colloid Interf. Sci., 464: 175 (2016).
[32] Dai L., Wang Y., Zou X.J., Chen Z.R., Liu H., Ni Y.H., Ultrasensitive Physical, Bio, and Chemical Sensors Derived from 1-, 2-, and 3-D Nanocellulosic Materials, Small, DOI:10.1002/smll.201906567 (2020).
[33] Huo Y.X., Wu H., Wang Z. L., Wang F., Liu Y.L., Feng Y.Y., Zhao Y.N., Preparation of Core/Shell Nanocomposite Adsorbents Based on Amine Polymer-modified Magnetic Materials for the Efficient Adsorption of Anionic Dyes, Colloid Surface A- Physicochemical and Engineering Aspects, 549:174-183(2018).
[34]Lu T.T., Zhu Y.F., Qi Y.X., Kang Y.R., Wang A.Q., Tunable Superporous Magnetic Adsorbent Prepared via Eco-friendly Pickering MIPEs for High-efficiency Adsorption of Rb+ and Sr2+, Chem. Eng. J., 368:988-998(2019).
[35] Lu H. L., Zhang L.L., Wang B.B., Long Y.D., Zhang M., Ma J.X., Khan A., Chowdhury S.P., Zhou X.F., Ni Y.H., Cellulose-supported Magnetic Fe3O4–MOF Composites for Enhanced Dye Removal Application, Cellulose, 26: 4909-4920(2019).
[36] Li Y., Xiao H.N., Chen M.D., Song Z. P., Zhao Y., Absorbents Based on Maleic Anhydride-Modified Cellulose Fibres/Diatomite for Dye Removal, J. Mater. Sci., 49: 6696 - 6704 (2014).
[37] Al-Degs Y., Khraisheh M.A., Tutunji M.F., Sorption of Lead Ions on Diatomite and Manganese Oxides Modified Diatomite, Water Res., 35(15): 3724–3728 (2001).
[38] Zhao H.B., Kwak J.H., Zhang Z.C., Brown H.M., Arey B.W., Holladay J.E., Studying Cellulose Fiber Structure by SEM, XRD, NMR and Acid Hydrolysis, Carbohyd. Polym., 68(2): 235-241(2007).
[39] Li J., Wang X.J., Wang J., Li Y., Xia S.Q., Zhao J.F., Simultaneous Recovery of Microalgae, Ammonium and Phosphate from Simulated Wastewater by MgO Modified Diatomite, Chem. Eng. J., 362: 802-811 (2019).
[40] Zhou J.P., Li R., Liu S. L., Li Q., Zhang L. Z., Zhang L.N., Structure and Magnetic Properties of Regenerated Cellulose/Fe3O4 Nanocomposite Films, J. Appl. Polym. Sci., 111(5): 2477−2484(2009).
[43] Ahamad T., Naushad M., Eldesoky G.E., Al-Saeedi S.I., Nafady A., Al-Kadhi N.S., Al-Muhtaseb A.H.,  Khan A.A., Khan A., Effective and Fast Adsorptive Removal of Toxic Cationic Dye (MB) from Aqueous Medium Using Amino-functionalized Magnetic Multiwall Carbon Nanotubes, J. mol. Liq., 282:154-161 (2019).
[45] Bharti S.N., Madras G., Adsorption of Anionic Dyes on a Reversibly Swelling Cationic Superabsorbent Polymer, J. Appl. Polym. Sci., 127: 2251-2258 (2013).
[46] Khalil A., Sergeevich N., Borisova V., Removal of Ammonium from Fish Farms by Biochar Obtained from Rice Straw: Isotherm and Kinetic Studies for Ammonium Adsorption, Adsorpt. Sci. Technol., 36: 1294–1309(2018).
[47] Yu Q., Xia D., Li H., Ke L., Wang Y., Wang H., Zheng, Y., Li, Q., Effectiveness and Mechanisms of Ammonium Adsorption on Biochars Derivedbfrom Biogas Residues, RSC Adv., 6: 88373–88381 (2016).
[48] Zhang, X., Lin, X., He, Y., Chen, Y., Zhou, J., Luo, X., Adsorption of Phosphorus from Slaughterhouse Wastewater by Carboxymethyl Konjac Glucomannan Loaded with Lanthanum, Int. J. Biol. Macromol., 119: 105–115(2018).
[49] He X.Y., Male K.M., Nesterenko P. N., Brabazon D., Paull B., Luong J.H.T., Adsorption and Desorption of Methylene Blue on Porous Carbon Monoliths and Nanocrystalline Cellulose, ACS Appl. Mater. Inter., 5:8796-8804(2013).
[50] Albadarin A.B., Collins M.N., Naushad M., Shirazian S., Walker G., Mangwandi C., Activated Lignin-chitosan Extruded Blends for Efficient Adsorption of Methylene Blue, Chem. Eng. J., 307: 264-272(2017).
[51] Dehghani M.H., Dehghan A., Alidadi H., Dolatabadi M., Mehrabpour M., Converti A., Removal of Methylene Blue Dye from Aqueous Solutions by a New Chitosan/Zeolite Composite from Shrimp Waste: Kinetic and Equilibrium Study, Korean J. Chem. Eng., 34(6): 1699-1707(2017).
[52] Le M.Q.C., Cao X.T., Lee W.K., Hong S.S., Lim K.T., Fabrication and Adsorption Properties of Novel Magnetic Graphene Oxide Composites for Removal of Methylene Blue, Mol. Cryst. Liq. Cryst., 644(1): 160-167(2017).
[54] Zhang S.W., Yang H.C., Huang H.Y., Gao H.H., Wang X.X., Cao R.Y., Li J. X., Xu X. J., Wang X. K., Unexpected Ultrafast and High Adsorption Capacity of Oxygen Vacancy-rich WOx/C Nanowire Networks for Aqueous Pb2+ and Methylene Blue Removal, J. Mater. Chem. A, 5(30): 15913-15922 (2017).
[55] Zhang J., Ping Q.W., Niu M.H., Shi H.Q., Li N., Kinetics and Equilibrium Studies from the Methylene Blue Adsorption on Diatomite Treated with Sodium Hydroxide, Appl. Clay Sci., 83-84: 12-16 (2013).
[56] Mohamed E.A., Selim A.Q., Zayed A.M., Komarneni S., Mobarak M., Seliem M.K., Enhancing Adsorption Capacity of Egyptian Diatomaceous Earth by Thermochemical Purification: Methylene Blue Uptake, J. Colloid Interf. Sci., 534:408-419(2019).