Preparation and Characterization of a Novel Polysulfone (PS) Mixed Matrix Membrane Modified with a SAPO-34 Nanofiller for CO2/CH4 Gaseous Mixture Separation

Document Type : Research Article

Authors

Chemical Engineering Department, South Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN

Abstract

Blended matrix polymer membranes have attracted attention today due to their high efficiency in gas separation. In this study, PS / SAPO 34 polymer membranes were synthesized and evaluated by the phase separation method. ُynthesized PS/SAPO-34 mixed matrix membranes (MMMs) were characterized via FESEM, TGA, and DSC analyses. Various parameters such as air gap distance, dope extrusion rate, and jet stretch were examined. After that, the process of separation of CO2 and CH4 gases was investigated. The results showed that the addition of SAPO nanoparticles improved membrane performance. The highest selectivity was obtained at a temperature 28 and a pressure 0.5 bar. Permeation results manifested that the PS/SAPO-34 fabricated at optimum conditions has incredible worth from the perspective of industrial separations of CO2 from the flue and natural gas.

Keywords

Main Subjects


[1] Rezakazemi M., Sadrzadeh M., Matsuura T., Thermally Stable Polymers for Advanced High-Performance Gas Separation Membranes, Progress in Energy and Combustion Science, 66: 1-41 (2018).
[2] Razavi S.M.R., Rezakazemi M., Albadarin A.B., Shirazian S., Simulation of CO2 Absorption by Solution of Ammonium Ionic Liquid in Hollow-Fiber Contactors, Chemical Engineering and Processing: Process Intensification, 108: 27-34 (2016).
[3] Soroush E., Shahsavari Sh., Mesbah M., Rezakazemi M., Zhang Z., A Robust Predictive Tool for Estimating CO2 Solubility in Potassium Based Amino Acid Salt Solutions, Chinese Journal of Chemical Engineering, 26(4): 740-746 (2018).
[4] Rezakazemi M., Heydari I., Zhang Z., Hybrid Systems: Combining Membrane and Absorption Technologies Leads to More Efficient Acid Gases (CO2 and H2S) Removal From Natural Gas, Journal of CO2 Utilization, 18: 362-369 (2017).
[5] Rezakazemi M., Khajeh A., Mesbah M., Membrane Filtration of Wastewater from Gas and Oil Production, Environ Chem Lett,  : 1-22 (2017).
[6] Kambarani M., Bahmanyar H., Mousavian M.A., Mousavi S.M., Crossflow Filtration of Sodium Chloride Solution by A Polymeric Nanofilter: Minimization of Concentration Polarization by a Novel Backpulsing Method, Iran. J. Chem. Chem. Eng. (IJCCE), 35(4): 135-141 (2016).
[7]    Mandanipour V., Noroozifar M., Alam A.R.M.-., Khorasani-Motlagh M., Fabrication and Characterization of a Conductive Proton Exchange Membrane Based on Sulfonated Polystyrenedivinylbenzene Resin-Polyethylene (SPSDR-PE): Application in Direct Methanol Fuel Cells, Iran. J. Chem. Chem. Eng. (IJCCE), 36(6): 151-162 (2017).
[8] An X., Ingole P.G., Choi W.K., Lee H.K., Hong U., Jeon D., Development of Thin Film Nanocomposite Membranes Incorporated with Sulfated Β-Cyclodextrin for Water Vapor/N2 Mixture Gas Separation, Journal of Industrial and Engineering Chemistry, 59: 259-265 (2018).
[9] Ingole P.G., Baig M.I., Choi W., An X., Choi W.K., Lee H.K., Role of Functional Nanoparticles to Enhance the Polymeric Membrane Performance for Mixture Gas Separation, Journal of Industrial and Engineering Chemistry, 48: 5-15 (2017).
[10] Farno E., Rezakazemi M., Mohammadi T., Kasiri N., Ternary Gas Permeation Through Synthesized Pdms Membranes: Experimental and CFD Simulation Based on Sorption-Dependent System Using Neural Network Model, Polymer Engineering and Science, 54(1): 215-226 (2014).
[11] Jiang X., Ding J., Kumar A., Polyurethane-Poly(Vinylidene Fluoride) (PU-PVDF) Thin Film Composite Membranes for Gas Separation, Journal of Membrane Science, 323(2): 371-378 (2008).
[12] Rezakazemi M., Dashti A., Asghari M., Shirazian S., H2-Selective Mixed Matrix Membranes Modeling Using ANFIS, PSO-ANFIS, GA-ANFIS, International Journal of Hydrogen Energy, 42(22): 15211-15225 (2017).
[13] Ingole P.G., Sohai M., Abou-Elanwar A.M., Baig M., Heon J.D., Choi W.K., Kim H., Lee H.K., Water Vapor Separation from Flue Gas Using MOF Incorporated Thin Film Nanocomposite Hollow Fiber Membranes, Chemical Engineering Journal, 334: 2450-2458 (2018).
[14] Baheri B., Shahverdi M., Rezakazemi M., Motaee E., Mohammadi T., Performance of PVA/NaA Mixed Matrix Membrane for Removal of Water from Ethylene Glycol Solutions by Pervaporation, Chemical Engineering Communications, 202(3): 316-321 (2015).
[15] Shahverdi, M., Baheri B., Rezakazemi M., Motaee E., Mohammadi T., Pervaporation Study of Ethylene Glycol Dehydration Through Synthesized (PVA-4A)/Polypropylene Mixed Matrix Composite Membranes, Polymer Engineering and Science, 53(7): 1487-1493 (2013).
[16] Rezakazemi, M., Mohammadi T., Gas Sorption in H2-Selective Mixed Matrix Membranes: Experimental and Neural Network Modeling, International Journal of Hydrogen Energy, 38(32): 14035-14041 (2013).
[17] Rezakazemi M., Shahidi K., Mohammadi T., Sorption Properties of Hydrogen-Selective PDMS/Zeolite 4A Mixed Matrix Membrane, International Journal of Hydrogen Energy, 37(22): 17275-17284 (2012).
[18] Rezakazemi M., Zhang Z., "Desulfurization Materials, in Comprehensive Energy Systems”. Elsevier Inc. p. 944-979 (2018).
[19] Karatay E., Kalipçilar H., Yilmaz L., Preparation and Performance Assessment of Binary and Ternary PES-SAPO 34-HMA Based Gas Separation Membranes, Journal of Membrane Science, 364(1-2): 75-81 (2010).
[20] Hudiono Y.C., Carlisle T.K., LaFrate A.L., Gin D.L., Noble R.D., Novel Mixed Matrix Membranes Based on Polymerizable Room-Temperature Ionic Liquids and SAPO-34 Particles to Improve CO2 Separation, Journal of Membrane Science, 370(1-2): 141-148 (2011).
[21] Sen M., Das N., In Situ Carbon Deposition in Polyetherimide/SAPO-34 Mixed Matrix Membrane for Efficient CO2/CH4 Separation, Journal of Applied Polymer Science, 134(46): 45508 (2017).
[22] Zhao D., Ren J., Li H., Hua K., Deng M., Poly(amide-6-b-ethylene oxide)/SAPO-34 Mixed Matrix Membrane for CO2 Separation, Journal of Energy Chemistry, 23(2): 227-234 (2014).
[24] Ahmad N.N.R., Mukhtar H., Mohshim D.F., Nasir R., Man Z., Effect of Different Organic Amino Cations on SAPO-34 for PES/SAPO-34 Mixed Matrix Membranes Toward CO2/CH4 Separation, Journal of Applied Polymer Science, 133(18):    -    (2016)
[25] Sadeghi, M., et al., Study on the Morphology and Gas Permeation Property of Polyurethane Membranes, Journal of Membrane Science, 385-386(1): 76-85 (2011).
[26] Omrani H., Naser I., Rafiezadeh M., Experimental And Numerical Study of CO2/CH4 Separation Using SAPO-34/PES Hollow Fiber Membrane, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 40(3): 841- 852 (2021).
[27] Gholami M., Mohammadi T., Mosleh S., Hemmati M., CO2/CH4 Separation Using Mixed Matrix Membrane-Based Polyurethane Incorporated with ZIF-8 Nanoparticles, Chemical Papers, 71(10): 1839-1853 (2017).
[28] Jeon S., Karkhanechi H., Fang L.-F., Cheng L., Ono T., Nakamura R., Matsuyama H.,, Novel Preparation and Fundamental Characterization of Polyamide 6 Self-Supporting Hollow Fiber Membranes via Thermally Induced Phase Separation (TIPS), Journal of Membrane Science, 546: 1-14 (2018).