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ABSTRACT: In this research, Expandable Polystyrene (EPS) polymerization with conventional and 

Multi-stage Initiator Dosing (MID) methods is simulated by Multi-Layer Perceptron (MLP) Artificial 

Neural Networks (ANN). In order to optimize MID method, an efficient algorithm was employed for 

optimal training of the neural network. An algorithm was used to train the MLP networks more 

rapidly and efficiently than the conventional procedures. The main objective of MID method 

implementation is to reduce the time of the polymerization and because of that, by having different 

tests (first stage polymerization at 4, 3.5, 3, 2.5 hours and different amounts of used initiator at 

common state 100, 80, 75, 70 percent and the different number of dosings 12, 10, 8, 6) it was found 

that in an optimal state, the first stage polymerization time can be 3 hours and amount of the used 

initiator can be reduced to 70% in comparison to common state and number of dosings can be 6 times. 

The results of the simulation showed that the time of the first step of the polymerization has been reduced, 

the amount of the used initiator has been optimized and the count of the dosing times reduced to half,  

and therefore the time of the EPS polymerization is reduced to 60% of the conventional method. 
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INTRODUCTION 

Expandable polystyrene is produced from the 

polymerization of polymeric monomers by the suspension 

polymerization method. Polymer foams have a wide range of 

industrial uses, like thermal insulation, excellent shock 

absorption, moisture resistance, and many other applications. 

Polystyrene foam is produced by expanding the expandable 

polystyrene beads. Expandable polystyrene is formed 

 

 

 

from styrene polymeric network including pentane and  

in a suspension polymerization process, styrene gained 

polymeric structure [1-4] Flame-retardant and smoke-

suppressant expanded polystyrene (EPS) foams were 

prepared [5]. An efficient method has been used to 

synthesize micro-sized EPS foams which can assist future 

investigations into the environmental effects of EPS  

 

 

 

* To whom correspondence should be addressed. 

+ E-mail: f.dfard@gmail.com 

1021-9986/2022/3/890-901      12/$/6.02 
 



Iran. J. Chem. Chem. Eng. Applications of Multi-Layer Perceptron Artificial ... Vol. 41, No. 3, 2022 

 

Research Article                                                                                                                                                                  891 

foams [6]. The behavior of PS foams and microplastics 

adhered to PS foams were investigated [7]. Polystyrene 

foams are produced in three steps: pre-expansion, middle 

storage, and final expansion.  In the first step, beads  

are heated up and polystyrene has been softened. With  

the evaporation of expansion factor, bubbles of 

polystyrene grow rapidly as much as heat and expansion 

factor exists. It is possible for the bubbles to expand nearly 

30 times their original size. In the second step, which is 

between the first and last step, it is needed to let the air 

infiltrate into cells. In the final step, the air is needed  

as completing the expansion factor. Air softened cell 

structures become resistant in front of atmospheric 

pressure when they separate from the template. Usually,  

the final expansion occurs automatically. Templates of  

the pre-expanding beads have been filled and exposed to steam [8]. 

Suspension polymerization is an important heterogeneous 

polymerization technology that has been used in order 

to produce special polymeric granules. The production 

process of EPS by suspension polymerization of styrene 

with the addition of blowing agents (as pentane gas) is well 

known. Polystyrene is a long-chain hydrocarbon in which 

carbon centers are attached to phenyl groups [9-11]. Many 

researchers declared that data-based modeling methods 

such as neural networks in an industrial process have major 

importance. ANN is a computational method for 

prediction. In ANN method, which is a nonlinear mapping 

structure, the method takes different units in the input and 

output layers. ANN has several units interconnected with 

each other in order to discover the relationship between 

them and to estimate outputs. ANNs can be used in order 

to extract patterns and detect trends [12-14]. Neural 

networks generally consist of several interconnected 

neurons in one or more hidden layers. These neurons can 

be grouped from different aspects such as the type of the 

input transformation, their structural architecture, and  

the type of learning algorithm [15]. Neural networks can 

work either as projection or kernel-based transformations 

to calculate the relationship between the inputs. In the first 

change, the inputs are machinated on a single axis,  

the projection can be linear or non-linear. The MacCulloch-

Pitt neuron, Perceptron, and Adaline are examples of linear 

projections. In the second change, the input vector norm 

with respect to a fixed point is used. Radial basis function 

networks are a very popular kernel-based input change 

method. The obtained parameters are capable of study  

in ANN, therefore, RBF and MLP methods of the ANN 

can be used in order to reduce the number of experiments 

[16,17]. 

 

Expandable polystyrene: Conventional method 

In an invention, in order to have a process for making 

gray expanded polystyrene, it has been prepared via 

suspension polymerization by using an additive (carbon 

black and/or graphite) only after approximately 20 to 60 wt. % 

of the conversion of the styrene monomer into the polystyrene. 

In one non-limiting embodiment, the styrene polymerization 

rate has about 35 wt. % to about 60 wt. % styrene 

monomers remaining after 3 hours from the beginning of 

the polymerizing [18]. In an invention, in order to have a 

process for controlling the particle size of the preparation 

of expandable styrene polymers by suspension 

polymerization, the EPS is prepared by polymerizing 

styrene and optionally polymerizable comonomers in 

stirred aqueous suspension in the presence of monomer-

soluble free radical initiator and dispersant to the extent 

that at least 70% of the monomers are polymerized (based 

on the total monomer) in the aqueous suspension, initially 

to a conversion of at least 70% by weight and then adding 

the remaining monomer, initiator and optional 

copolymerizable monomer and additives to the 

polymerization medium over one to three hours [19].  

In a study, in order to synthesize water expandable 

polystyrene-activated carbon, active carbon pre-saturated 

with water was introduced into the styrene monomer to 

form a water-in-oil inverse emulsion without emulsifiers. 

By suspension polymerization, Water Expandable  

Poly Styrene/Activated Carbon (WEPSAC) beads could 

subsequently obtain. Low-density PS foams were produced 

in the CO2 extrusion foaming process using WEPSAC [20]. 

 

Expandable polystyrene: Multi-stage initiator dosing 

method 

In a study, EPS has been prepared on a laboratory scale 

by the initiator dosing method, in which unlike the 

conventional method that the initiator is added as a powder 

at the beginning of the polymerization, in this method 

initiator has been added in several shares into the reactor 

in the polymerization process. As the first step of the 

polymerization of this method has occurred at a higher 

temperature, therefore the reactor is needed to be closed 

and processed at higher pressure. Thus, the benzoyl  peroxide
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powder initiator has been prepared in styrene monomer 

suspension and entered the reactor with a dosing pump in 

several shares. The results of the study showed that the 

prepared polymer from this method has higher pentane 

absorption, better grading, and better mechanical strength 

in comparison to the prepared polymer from the 

conventional method [9]. The kinetics of the prepared 

polymer in the previous research has been studied, and  

the EPS with MID method was prepared by free radical 

suspension polymerization. By using kinetic relations, 

conversion percentage in different steps has been obtained, 

and by obtained conversion percentage the experiments 

have been compared, and the data obtained from kinetic 

relations had good coverage for the laboratory data [21]. 

In a study, enhanced productivity, mathematical modeling, 

and experimental study of the continuous dosing of the fast 

initiator during suspension polymerization have been 

researched. For reducing the batch time required for the 

suspension polymerization of the vinyl chloride in order to 

improve productivity by a continuous dosage of a fast 

initiator during the polymerization reaction, an adopted 

mathematical model was developed. They used a  

the pilot-scale reactor in order to verify the mathematical 

model prediction. And the results were acceptable. The 

maximum time reduction compared to the conventional 

polymerization for the predefined conversion was 53%. 

Final PVC product characteristics remained relatively 

unchanged under an optimum initiator dosage trajectory 

in comparison with the conventional processes [22].  

In an invention, in order to involve the dosing initiators  

in the polymerization process, at least one peroxide, with 

a half-life of between 1 hour and 0.001 hours at the 

polymerization temperature at the moment of dosing, is 

dosed to the reaction mixture at the polymerization 

temperature. During the dosing of the peroxide, the 

cooling means of the reactor are kept at maximum cooling 

capacity and the amount of dosed initiator is actively 

controlled. The desired polymerization temperature is 

achieved and maintained within 0.3 ℃ of said 

polymerization temperature [23]. In an invention, in order 

to polymerize ethylene in a high-pressure reactor with 

improved initiator feeding, the preparation of the ethylene 

homopolymers or copolymers in a high-pressure reactor 

with at least two spatially separated initiator injection 

points by polymerizing ethylene and optionally further 

monomers in the presence of at least two different mixtures 

of free-radical polymerization initiators at 100℃-350℃  

and pressures in the range of from 160 MPa to 350 MPa, 

has been processed. The process comprises providing  

at least two different initiators as a solution in a suitable 

solvent or in a liquid state, mixing the initiator, feeding 

each of the mixtures to a different initiator injection point 

of the high-pressure reactor, and apparatus for feeding 

initiator mixtures to a high-pressure reactor with at least 

two spatially separated initiator injection points [24]. 

 

Determination of different parameters in the production 

of expandable polystyrene with artificial neural networks 

In our previous study, the effect of general 

performances of RBF method of ANN with laboratory data 

on different nanoparticles in different temperatures and 

mass fractions on the viscosity of crude oil was studied.  

In order to learn RBF networks, the major method for 

calculating isotropic Gaussian basis function span for RBF 

networks containing special algorithm were presented. 

The results showed that RBF neural networks had  

an acceptable performance because of having strong 

academic basics and the ability to filter the noises. This 

method contains all the experimental data perfectly and 

provides information about the viscosity [25]. In our 

previous study, in order to simulate the experimental CO2 

absorption data in a packed column by application of 

ANN, the generalization performances of the Back 

Propagation Multi-Layer Perceptron (BPMLP) and RBF 

neural networks were compared together by resorting  

to several sets of experimental data collected from a pilot-

scale packed absorption column. Two in-house efficient 

algorithms were employed for optimal training of both 

neural networks. The simulation results showed that the 

RBF networks can perform more adequately than the MLP 

networks for filtering the noise (measurement errors) and 

capturing the true underlying trend which is essential  

for a reliable generalization performance [26]. In a study, 

in order to detect the effect of different parameters on 

WEPS production and Thermal Behavior Prediction Using 

ANN, spherical Polystyrene beads containing small water 

droplets are applied. The effect of sodium chloride (NaCl) 

on water distribution into WEPS beads has been 

investigated. The ANN model was developed for the 

prediction of Differential Thermal Analysis (DTA) data  

in different temperatures. The results showed that there  

is a good agreement between predicted thermal behavior  
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and the actual values [11]. In a study, an ANN model has 

been used in order to estimate reservoir parameters from 

experimental data. Theoretical pressure derivative curves 

with Pseudo Steady State (PSS) inter porosity flow has 

been used to train the ANN. Coefficients of the 

interpolating Chebyshev polynomials have been used  

on the pressure derivative data in a log-log plot as input  

to the ANN. Different training algorithms have been used 

to train ANN and obtained an optimum number of neurons 

for each algorithm by minimizing Mean Relative Error (MRE) 

over the test data. The results showed that the Levenberg-

Marquardt algorithm has the lowest possible MRE among 

other algorithms and has been used to train the ANN.  

The coefficients of the conventional polynomials and 

pressure derivative data have been normalized to train  

the ANN. The results of this study declared that using 

the coefficient of conventional polynomials makes the learning 

phase of the neural network worse compared to the 

normalization method [17]. In a study, M. M. Al-Dousari et al. 

used an ANN model for predicting the recovery 

performance of surfactant polymer floods. In order to 

estimate the recovery performance of a reservoir subjected 

to a Surfactant-Polymer (SP) flood, they developed a 

supervised feed-forward back-propagation neural network 

model. They designed the optimal network paradigm by 

conducting extensive experimentation on the proper 

number of hidden layers and neurons in each of these 

layers. They trained the network model on a data set 

consisting of 499 simulations, generated by using a three-

dimensional compositional chemical flood simulator. 

Their simulation runs consisted of 90% tertiary chemical 

floods and 10% secondary chemical injections. Their 

optimal network architecture was able to estimate back the 

oil recovery from the training set within 1.5% average 

absolute error. Their ANN model predicted the oil 

recovery for a blind-test data set of 125 simulated field 

cases within approximately 3% average absolute error. 

Their ANN model outperformed the non-linear 

multivariate models available in the literature study [27].  

In a study, an ANN model has been designed for dual 

lateral well applications. The objective was to generate 

ANN tools that can provide the necessary knowledge to 

evaluate the utilization of the dual horizontal well technique 

in tight gas reservoirs. Rate profile, gas recovery profile, 

dual horizontal well configuration, and pattern size  

have been predicted. Two ANN models have been developed, 

forward and inverse, in order to achieve the main 

objective. The ANN model has been trained, validated, 

 and tested by using training data generated by a commercial 

simulator. The forward tool that has been developed  

was tested and granted a mean square error of 7.5%, while 

the inverse tool which has been developed was tested 

yielding a mean square error of 9.8%. The developed tools 

can compare thousands of different input combinations  

in a much more rapid way as compared to commercial 

simulators [28]. In a study, various characterization 

methods have been investigated by using a generalized 

distribution model and ANN. In order to investigate the 

accuracy of various characterization methods based on the 

attainable input data of heptane plus fraction (C7+) using 

a generalized distribution model, a statistical analysis over 

a wide range of experimental data has been carried out. 

Also, a new accurate approach based on Riazi’s 

generalized distribution model with input data of 

molecular weight (M7+), specific gravity (SG7+), and true 

boiling point distribution (Tb) has been developed.  

In addition, an ANN model has been trained and tested  

for three different sets of input data including (M7+, 

SG7+), (M7+, SG7+, Refractive index), and (M7+, SG7+, 

Tb7+). The last input data showed the most precise results 

in good agreement with experimental data. Ultimately,  

the impact of characterization methods and lumping on phase 

behavior for two crude oil samples has been investigated [29]. 

In this study, the MID method of EPS polymerization 

in a semi-industrial unit scale has been simulated by ANN. 

The mechanical strength of the synthesized EPS by MID 

method has been investigated in three different 

parameters: a) Initiator dosing counts, b) Initiator 

percentage, c) Time of the first step polymerization.  

The laboratory data received by the initiator dosing 

method in the optimum state has been simulated by MLP 

ANN model and in the optimum state, the time of the 

polymerization has been reduced and the amount of the 

initiator which has been used for the process is reduced  

in comparison with the conventional method, the MLP 

ANN model has covered the laboratory data perfectly. 

In our previous studies [9, 21] the goal was to 

implement the MID method for synthesizing expandable 

polystyrene (EPS). By implementing this method, the 

amount of used initiator and the time of the first stage 

polymerization has been reduced but furthermore, tests 

and simulations of the optimum amount of the above cases 
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was needed and therefore this research deals with this need 

besides that, the optimum number of dosings has been 

achieved. 

 

EXPERIMENTAL SECTION 

Materials 

In this research, we used Styrene (monomer – purity 

99.7%), Pentane (99%) as blowing agents, Reagent grade 

Calcium Phosphate (Mw= 310.18g/mol), Polyvinyl 

Alcohol (Mw=47000 and 98% hydrolyzed), Benzoyl 

Peroxide, tert-Butyl Bnezoyl Peroxide and deionized 

water (suspension media). Styrene, pentane, and deionized 

water were obtained from Tabriz Petrochemical Company, 

and Reagent grade Calcium phosphate, Polyvinyl Alcohol, 

Dichloromethane, Benzoyl Peroxide, and tert-Butyl 

Benzoyl Peroxide were purchased from Merck. 

 

Equipment 

A 300 L stainless steel Buchi reactor equipped with 

baffles with a discharge valve at the bottom, and  

a thermostatically controlled hot oil jacket with a three-

blade mixer has been used as a laboratory setup.  

The initiator has been supplied to the reactor at the 

programmed time and dosed by the dosing pump. Varian 

3800CP Gas Chromatographer has been used the 

determination the percentage of pentane absorbed and  

the concentration of the monomer remaining in the sample. 

Testing was conducted in accordance with ASTM 5135. 

The mechanical strength of the prepared blocks was tested 

by Zwick Roll (model TI- FR010THA50) Germany 

according to ASTM 1621. 

 

Preparation of benzoyl peroxide suspension 

654 g Benzoyl Peroxide has been dissolved in 

Dichloromethane. Dichloromethane has been added until 

Benzoyl Peroxide has been completely dissolved. 690 g 

PolyVinyl Alcohol (PVA) solution was prepared in 8 L 

water and Stirred at 300 rpm speed. Benzoyl peroxide and 

dichloromethane have been added to the stirring solution. 

The solution was stirred for 8 h. Benzoyl Peroxide solution 

has been prepared in water which has more persistence. 

 

Methods of polymerization 

Conventional method 

In this method semi-industrial unit has been considered, 

144 kg of water was charged into a 300-Litre reactor, 

followed by 336g (1.086 mol) of tricalcium phosphate and 

96 kg (923.1 mol) of styrene monomer. The reaction 

mixture was stirred at 360 rpm. 135.6 kg (0. 6984 mol) of 

tert-butyl benzoyl peroxide and 355.8 g (1.4688 mol) of 

benzoyl peroxide were added to the mixture when the 

reactor temperature reached 40℃. The temperature was 

further increased to 90℃ at a rate of 0.83℃/min and kept  

at 90℃ for 4 h. During this “low-temperature polymerization” 

stage, because of the existence of the risk of agglomeration 

of polymer beads, which might result in the formation of  

a two-phase system or undesirable lumps, the size and 

growth of the particles were regularly checked. At the end 

of the 4 h period of the low-temperature polymerization, 

16.8912 g (0.0146808 mol) of polyvinyl alcohol (5wt %) 

and 7.68 kg (106.446 mol) of pentane were added and  

the temperature was increased to 120℃ at a rate of 0.5℃/MIN 

(7bar). It should be noted that the boiling point of  

the deionized Water in 7 bar pressure is equal to 164.97℃. 

The reactor was kept at 120℃ for 5 h and subsequently cooled 

to room temperature. It took about 1 h for the temperature  

of the reactor to reach room temperature. Finally, the reactor 

was evacuated, and polymer beads were filtered, washed  

with deionized water, and dried. 

 

Multi-Stage initiator dosing method 

As shown in Fig. 1, in this method semi-industrial unit 

has been considered,144 kg of water, 336 g (1.086 mol) of 

tricalcium phosphate, 690 g (0.0146808 mol) of polyvinyl 

alcohol (5wt %), and 89.46 kg (860.19 mol) of styrene 

monomer were charged into the reactor. The temperature 

was increased to 85℃ at a rate of 1.083℃/min. Then  

the initiator solution in 4 different states (containing 355.8 g, 

284.4 g, 266.82 g and 249.06 g benzoyl peroxide  

in 6.54 kg (62.88 mol) styrene) was equally divided into 

12 ,10, 8, 6 parts and charged at the specified dosing 

intervals and temperatures to the reactor. The polymerization 

was carried out in 4, 3.5, 3, 2.5 hours of polymerization.  

At the end of the so-called “low-temperature 

polymerization stage”, 7.68 kg (106.446 mol) of pentane 

and 135.6 g (0.6984 mol) of tert-butyl benzoyl peroxide  

as the initiator of the second stage were added. The reaction 

mixture was heated to 120℃ at a rate of 0.33℃/min, and 

polymerization was continued for 2.5 h (7 bar). 

Expandable polystyrene has many applications. 

Therefore, due to the large-scale consumption of EPS,  

the preparation of this polymer is important. The process  
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Fig. 1: Polymerization setup for MID EPS Synthesis. 

 

of preparation of this polymer is time-consuming. So,  

by decreasing the needed time for polymerization,  

the production capacity of this polymer increases.  

By implementing MID method, the time of the 

polymerization reduces, and as a result, production capacity 

increases. On the other hand, the whole process is easier 

because of the dosings of the initiator in parts in MID method, 

and the amount of initiator usage is reduced. 

In conventional preparation of this polymer, the 

initiator enters altogether into the reactor at the first stage. 

Therefore, during the 4-hour polymerization, the material 

has to be sampled from the inside of the reactor in order to 

see if polymeric beads are formed or not. But in the MID 

method, there is no need to control the bead's growth. 

In Multi-Initiator Dosing (MID) method, despite  

In the conventional method, the initiator will be dosed into 

the system in several stages, therefore controlling the 

system will be easier in comparison to the conventional 

method. The first stage of polymerization in the new 

method happens at a higher temperature in comparison 

to the conventional method, which causes the time of  

the polymerization to be reduced. In MID method which 

happens at a higher temperature, in order to prevent boiling 

and overflow of the materials inside the reactors, the door 

of the reactor is closed. 

 

Artificial Neural Network 

Multi-Layer Perceptron (MLP) Network 

The basic element of a Multi-Layer Perceptron (MLP) 

neural network is the artificial neuron performing a simple 

mathematical operation on its inputs. The inputs are  

the variables x1, x2,…,xp, and a threshold (or bias) term. 

Every input value is multiplied by a weight, wi, after which 

the results are added with the bias term to produce z. finally,  

a known activation function, φ, performs a pre-specified  

(non-linear) mathematical operation on the projected inputs. 

Different activation functions such as sigmoid or hyperbolic 

tangent are traditionally used for this purpose. MLP networks 

can conclude many neurons are ordered in layers. While  

the neurons in the input and output layer merely distribute and 

collect the signals, the job of the neurons in the hidden layer 

is the actual processing. Although many hidden layers  

can be used, using one hidden layer network is more popular 

for practical applications due to its simple structure. Using 

multilayer hidden neurons usually leads to unnecessarily 

large degrees of freedom.  The MLP network is trained using 

adapting the synaptic weights using a back-propagation 

technique or any other optimization procedure. During  

In the training phase, the network output is compared with  

the desired output. The error between these two signals is used 

to adapt the weight. This rate of adaptation may be controlled 

by a learning rate. A high learning rate will make the network 

adapt its weights quickly but will make it potentially unstable. 

Setting the learning rate to zero will make the network keep 

its weights constant. The steepest-decent optimization technique 

with constant step length parameters (ղ ) was employed  

in this article. 

In this work, additional linear weights (α’s, as shown 

in Fig. 2 were used to accelerate the network convergence. 

The optimal values of these linear parameters are updated 

after each back-propagation iteration using the following 

set of linear equations:  

(𝜙𝑇𝜙)−
𝛼 = 𝜙𝑇 −

𝑦                                                                               (1) 

Where 𝜙I,j= φ(zi,j), i= 1,…, N & j= 1, …, M and y is the 

N*1 vector of measured values. The parameters N and M  
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Fig. 2: The regularization network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Learning algorithm for MLP Networks. 

 

represent a number of training data and a number of neurons, 

respectively. The training flow chart of such MLP network 

is given in our previous articles. 

Similarly, other quadratic methods (e.g. Newton-

like techniques) may be used to compute the optimal 

performances of the MLP networks. The so-called 

“line search” technique is usually used to predict the 

optimum learning rate compared to Newtown step 

length4 ( 𝛥𝑥 = −𝐺−1𝑔). Evidently, the quadratic 

methods converge faster at near-optimal points and are not 

necessarily far from them. This is one of the reasons 

why quasi-Newton techniques such as Levenberg-

Marquardt or Gauss-Newton are used [30]. Finally,  

the steepest-descent methods (such as back-propagation) 

are more robust than the quadratic techniques when  

a proper step length control is used. In practice, almost 

never Newton-like optimization methods are used  

for efficient neural network training because they  

can easily trap into sub-optimal solutions. The algorithm 

of the MLP network is shown in Fig. 3. 

 
RESULTS AND DISCUSSION 

EPS was prepared by conventional and multi-stage 

dosing methods. In the multi-stage dosing method, 

different counts of dosing and time of the polymerization, 

and amount of the initiator was tested. The stress-strain 

ratio of these tests is shown in Figs. 4, 5, 6. 
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𝛼 = 𝜙𝑇 −

𝑦  

Compute sum of squared errors (SE2) 

SE2<Tol 

Terminate Program, Retain synaptic weights (w’s) and linear weights (𝛼’s) 

NO 

YES 



Iran. J. Chem. Chem. Eng. Applications of Multi-Layer Perceptron Artificial ... Vol. 41, No. 3, 2022 

 

Research Article                                                                                                                                                                  897 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Stress-Strain ratio in different dosing counts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Stress-Strain ratio in different initiator percentages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Stress-Strain ratio at different times of the first step 

polymerization. 

 

In Fig. 4, the stress-strain ratio in different counts of 

initiator dosing is shown. The results indicate that  

the 6 counts of initiator dosing have a better slope between 

20% and 60% strain in comparison with other counts of 

initiator doings. By studying figures for different states,  

it becomes clear that for 3 states of initiator dosing times 

(12, 10, 8) by increasing stress, the amount of strain increases 

with a higher slope and causes the obtained blocks from EPS 

production to be fragile. But for the state with 6 dosing times, 

the figure has a gentle slope. Therefore, the state with 6 dosing 

times is better than the other states. 

In Fig. 5, stress strains for different initiator percentages 

are shown. The results show that all 4 charts have a similar 

slope and the chart with 70% initiator has better mechanical 

friction and better condition. Investigations declare that the growth 

chart is almost the same for all 4 states. All 4 figures have  

3 stages: 0 to 20% with a normal slope, 20 to 60% with a lower 

slope, and 60 to 80% with a steep slope. Because of having  

the most strain in the state with 70% of initiator amount  

in comparison to other states with the same stress, and 

economically, having less amount of initiator is better and 

makes the product have higher quality, the state with 70%  

of initiator amount is more acceptable in comparison with  

the conventional method. 

In Fig. 6 stress-strain ratios for different times of the first step 

of polymerization are shown. Because of the mechanical friction 

condition being similar in all 4 charts, the prepared polymer  

in 2.5, 3, 3.5, 4 hours of the polymerization in the first step,  

has a similar condition to other polymers. 

For different stresses in states with 4, 3.5, 3, 2.5 hours, 

the ratio chart of stress to strain behavior is almost the 

same and only the chart growth of 3 states (3, 3.5, 4 hours) 

is higher in between 60% to 80%. According to the main 

objective of this research (reducing the time of the 

polymerization) and the chart has no unusual behavior  

for the state with a lower time of first stage polymerization, 

the state with a lower first stage polymerization time has 

no problem in terms of stress to strain.  

In order to obtain the optimal condition, the following 

steps have been taken. 

The first step is to reach the optimal size of the used 

initiator; therefore, the optimization has been studied  

in 4 hours for polymerization and 12 times of initiator 

dosing and in 4 states for initiator size. 4 states respectively 

are 70% of the primitive size, 75% of the primitive size, 

80% of the primitive size, and unchanged size (100%). 

For the 4 states, the polymerization has been done, EPS 

blocks have been prepared, and the stress-strain test has been done. 

The results of the simulated laboratory data have been 

reported in Figs. 7, 8, 9 respectively. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 20 40 60 80 100

ST
R

A
IN

 (
M

P
)

STRESS(%)

6 COUNTS

8 COUNTS

10 COUNTS

12 COUNTS

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100

ST
R

A
IN

 (
M

P
)

STRESS(%)

100

80

75

70

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100

ST
R

A
IN

 (
M

P
)

STRESS (%)

2.5 h

3 h

3.5 h

4 h



Iran. J. Chem. Chem. Eng. Mehralizadeh A. et al. Vol. 41, No. 3, 2022 

 

898                                                                                                                                                                  Research Article 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: MLP results for reducing Initiator Percentage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: MLP results for polymerization time. 

 

The goal is to decrease the number of initiators for two 

reasons: 1) Economical reasons, 2) Reducing the number 

of initiators who remained in the final product. These 

results show that the state with 70% of the initiator is the 

best state. From the results, the reduction of the initiator up 

to 70% has not differed much, and the result of the state 

with 70% of the initiator size was acceptable. 

In the next step, with 70% of the amount of the 

initiator, the optimization of the time of the polymerization 

is the goal. The time of the polymerization has been set  

to 4, 3.5, 3, 2.5 hours, and after the polymerization and 

preparation of the polymer blocks, the respective test  

has been done, and the result of the simulation has been 

reported in Fig. 8. Results show that the polymerization 

time of 3 hours is better than the other times of the 

polymerizations, according to the figures of the other 

simulations. 

In the 3rd step, with choosing 70% of the initiator 

size and 3 hours for the polymerization, the goal is  

to optimize the injection counts. 4 states for the injection 

counts have been selected. The states were with 12, 10, 

8, 6 injections. The results of the simulations are reported 

in Fig. 9. 

The results have shown the state with 6 injections and 

3 hours of polymerization and 70% of the initiator size is 

the most optimal state possible. 

 

CONCLUSIONS 

 Expandable polystyrene synthesis by a new method 

causes the processing time to be reduced and production 

capacity to be increased. By adding the initiator in several 

stages, the control of the process becomes easier in 

comparison to the conventional method. In order to achieve 

the optimum state for MID method, first stage polymerization 

has been done in 4 states (4, 3.5, 3, 2,4 hours), amount of used 

initiator has been done in 4 states in comparison  

to the conventional method (100, 80, 75, 70 percent) and also 

number of dosings has been done in 4 states (12, 10, 8, 6 times).  
EPS polymerization with conventional and MID methods  

are stimulated by MLP ANN. In the MID method 

0.4 
 
 
 
 
 
 
 

0.2 
 
 
 
 
 
 
 

0 

P
r
e
d

ic
te

d
 o

u
tp

u
t  

0                                          0.2                                        0.4 

Measurements 

0.4 
 
 
 
 
 
 
 

0.2 
 
 
 
 
 
 
 

0 

P
r
e
d

ic
te

d
 o

u
tp

u
t  

0                                          0.2                                        0.4 

Measurements 

1 
 
 
 

0.5 
 
 
 

0 

S
tr

e
ss

 

0.3 

Reduced initiator percent 

0.15 

0 0 

0.4 

0.8 

Strain 

20 
 
 

 
5 
 
 

 
-10 

S
tr

e
ss

 

0 

0.4 

0.8 

0.4 

0.2 

0 

Polymerization time reduction Strain 



Iran. J. Chem. Chem. Eng. Applications of Multi-Layer Perceptron Artificial ... Vol. 41, No. 3, 2022 

 

Research Article                                                                                                                                                                  899 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9: MLP results for injection counts. 

 

by polymerization in higher temperatures and initiator 

doings in several shares, the problems of the conventional 

method have been solved. In order to optimize MID 

method, MLP method of the ANN has been used, and the 

results of the simulation showed that the time of the first 

step of the polymerization was reduced from 4 to 3 hours, 

and the amount of the used initiator was reduced to 70% 

and the count of the dosing times reduced to 50%. This is 

the most optimized state, and therefore the time of the EPS 

polymerization is reduced to 60% of the conventional 

method.  
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