Voltammetric Simultaneous Determination of Ascorbic Acid and Acetaminophen Based on Graphite Screen Printed Electrode Modified with a La3+-Doped ZnO Nanoflowers

Document Type : Research Article

Authors

1 Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, I.R. IRAN

2 Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, I.R. IRAN

3 NanoBioElectrochemistry Research Center, Bam University of Medical Sciences, Bam, I.R. IRAN

Abstract

In this work, an easy method was employed to successfully develop La3+-doped ZnO nanoflowers and Guar-Gum (GG) modified screen printed electrode (La3+/ZnO/GG/SPE), and La3+/ZnO/GG/SPE was applied for the electrochemical detection of Ascorbic Acid (AA). The electrochemical methods, such as Cyclic Voltammetry (CV), chronoamperometry (CHA), and Differential Pulse Voltammetry (DPV) were used to evaluate the electrochemical performances toward ascorbic acid on the La3+/ZnO/GG/SPE. Good linear-ship was observed for ascorbic acid in the ranges of 1.0–700.0 µM, with the detection limits of 0.03 µM. Moreover, this sensor proved favorable to simultaneously determine ascorbic acid and acetaminophen. Finally, the modified electrode has fairly good performance during the employment of real sample analysis to determine the content of ascorbic acid. These results indicate that the La3+-doped ZnO nanoflowers are supposed to be a promising material in the electrochemical determination of ascorbic acid and acetaminophen in real samples.

Keywords

Main Subjects


[1] Sanghavi B.J., Wolfbeis O.S., Hirsch T, Swami N.S., Nanomaterial-Based Electrochemical Sensing of Neurological Drugs and Neurotransmitters, Microchim. Acta, 182: 1-41 (2015).
[2] Tsai H.T., Chen T.W., Chen S.M., Lin,  K.C., A Study of Copper (II) Hexacyanoferrate-PEDOT Films and their Sensitivity for Ascorbic Acid and Acetaminophen, Int. J. Electrochem. Sci., 6: 2058-2071 (2011).
[3] Sheng Z.H., Zheng X.Q., Xu J.Y., Bao W.J., Wang F.B., Xia X.H., Electrochemical Sensor Based on Nitrogen Doped Graphene: Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid, Biosens. Bioelectron., 34: 125-131(2012).
[4] Habibi B., Jahanbakhshi M., Pournaghi-Azar M.H., Simultaneous Determination of Acetaminophen and Dopamine Using SWCNT Modified Carbon–Ceramic Electrode by Differential Pulse Voltammetry, Electrochim. Acta, 56: 2888-2894 (2011).
[6] Kumar K.G.,  Letha R., Determination of Paracetamol in Pure form and in Dosage Forms Using N,N-Dibromo Dimethylhydantoin, J. Pharm. Biomed. Anal., 15: 1725-1728 (1997).
[7] Khaskheli A.R., Shah A., Bhanger M.I., Niaz A., Mahesar S., Simpler Spectrophotometric Assay of Paracetamol in Tablets and Urine Samples. Spectrochim. Acta A, 68: 747-751 (2007).
[8] Barrales P.O., de Córdova M.L.F., Di A.M., Indirect Determination of Ascorbic Acid by Solid-Phase Spectrophotometry, Anal. Chim. Acta, 360: 143-152 (1998).
[9] Moreira A.B., Oliveira H.P.M., Atvars T.D.Z., Dias I.L.T., Neto G.O., Zagatto E.A.G., Kubota L.T., Direct Determination of Paracetamol in Powdered Pharmaceutical Samples by Fluorescence Spectroscopy, Anal. Chim. Acta, 539: 257-261 (2005).
[10] Ziemons E., Mantanus J., Lebrun P., Rozet E., Evrard B., Hubert P.H., Acetaminophen Determination in Low-Dose Pharmaceutical Syrup by NIR Spectroscopy, J. Pharm. Biomed. Anal., 53: 510-516 (2010).
[11] Akay C., Gümüsel B., Degim T., Tartilmis S., Cevheroglu S., Simultaneous Determination of Acetaminophen, Acetylsalicylic Acid and Ascorbic Acid in Tablet Form Using HPLC, Drug Metabol. Drug Interact., 15: 197-206 (1999).
[12] Thomis R., Roets E., Hoogmartens J., Analysis of Tablets Containing Aspirin, Acetaminophen, and Ascorbic Acid by High-Performance Liquid Chromatography, J. Pharm. Sci., 73: 1830-1833 (1984).
[14] Tehrani R.M.A., Allahgholi Ghasri M.R., Bakhtiarzadeh F., Tafreshi N., Ab Ghani S., Electrocatalytic Determination of Free Glycerol in Biodiesel at Nano Nickel Modified Graphite Electrode, Int. J. Nano Dimens., 3: 241-247 (2013).
[15] Foroughi M.M., Noroozifar M., Khorasani-Motlagh M., Simultaneous Determination of Hydroquinone and Catechol Using a Modified Glassy Carbon Electrode by Ruthenium Red/Carbon Nanotube, J. Iran. Chem. Soc., 12: 1139-1147 (2015).
[17] Gupta V.K., Agarwal S., Singhal B., Recent advances on Potentiometric Membrane Sensors for Pharmaceutical Analysis, Comb. Chem. High Throughput Screen, 14: 284-302 (2011).
[18] Gupta V.K., Sethi B., Sharma R.A., Agarwal S., Bharti A., Mercury Selective Potentiometric Sensor Based on Low Rim Functionalized Thiacalix [4] Arene as a Cationic Receptor, J. Mol. Liq., 177: 114-118 (2013).
[19] Maaref H., Foroughi M.M., Sheikhhosseini E., Akhgar M.R., Electrocatalytic Oxidation of Sulfite and its Highly Sensitive Determination on Graphite Screen Printed Electrode Modified with New Schiff Base Compound, Anal. Bioanal. Electrochem., 10: 1080-1092 (2018).
[20] VGupta V.K., Ganjali M.R., Norouzi P., Khani H., Nayak A., Agrawal S., Electrochemical Analysis of Some Toxic Metals and Drugs by Ion Selective Electrodes, Crit. Rev. Anal. Chem., 41: 282-313 (2011).
[21] Srivastava S.K., Gupta V.K., Jain S., Determination of Lead Using Poly (Vinyl Chloride) Based Crown Ether Membrane, Analyst, 120: 495-498 (1995).
[22] Zarei H., Zeinali M., Ghourchian H., Eskandari Kh., Gold Nano-Particles as Electrochemical Signal Amplifier for Immune-Reaction Monitoring, Int. J. Nano Dimens., 3: 69-76 (2013).
[23] Jain A.K., Gupta V.K., Sahoo B.B., Singh L.P., Copper(II)-Selective Electrodes Based on Macrocyclic Compounds, Anal. Proc. incl. Anal. Commun., 32: 99-101 (1995).
[24] Gupta V.K., Karimi-Maleh H., Sadegh R., Simultaneous Determination of Hydroxylamine, Phenol and Sulfite in Water and Waste Water Samples Using a Voltammetric Nanosensor, J. Electrochem. Sci., 10: 303-316 (2015).
[25] Yaghoubian H., Jahani Sh., Beitollahi H., Tajik S., Hosseinzadeh R., Biparva P., Voltammetric Determination of Droxidopa in the Presence of Tryptophan Using a Nanostructured Base Electrochemical Sensor, J. Electrochem. Sci. Technol., 9: 109-117 (2018).
[26] Gupta V.K., Singh A.K., Kumawat L.K., Thiazole Schiff Base Turn-in Fluorescent Chemosensor for Al3+ Ion, Sens. Actuators B, 195: 98-108 (2014).
[27] Srivastava S.K., Gupta V.K., Jain S., PVC-Based 2,2,2-Cryptand Sensors for Zinc Ions, Anal. Chem., 68: 1272-1275 (1996).
[28] Moutcine A., Chtaini A., Electrochemical Determination o Trace Mercury in Water Sample Using EDTA-CPE Modified Electrode, Sens. Bio-Sens. Res., 17:30-35 (2018).
[29] Gupta V.K., Pathania D., Agarwal S., Sharma S., Decolorization Of Hazardous Dye From Water System Using Chemical Modified Ficus Carica Adsorbent, J. Mol. Liq., 174: 86-94 (2012).
[30] Gupta V.K., Kumar S., Singh R., Singh L.P., Shoora S.K., Sethi B., Cadmium (II) Ion Sensing Through p-Tert-Butyl Calix[6]Arene Based Potentiometric Sensor, J. Mol. Liq., 195: 65-68 (2014).
[34] Nosuhi, M., Nezamzadeh-Ejhieh A., An Indirect Application Aspect of Zeolite Modified Electrodes for Voltammetric Determination of Iodate, J. Electroanal. Chem., 810: 119-128 (2018).
[36] Gupta V.K., Atar N., Yola M.L., Üstündağ Z., Uzun L., A Novel Magnetic Fe@Au Core–Shell Nanoparticles Anchored Graphene Oxide Recyclable Nanocatalyst for the Reduction of Nitrophenol Compounds, Water Res., 48: 210-217 (2014).
[38] Yola M.L., Gupta V.K., Eren T., Emre Şen A., Atar N., A Novel Electro Analytical Nanosensor Based on Graphene Oxide/Silver Nanoparticles for Simultaneous Determination of Quercetin And Morin. Electrochim. Acta, 120: 204-211 (2014).
[39] Gupta V.K., Mergu V.N., Kumawat L.K., Singh A.K., Selective Naked-Eye Detection of Magnesium(II) Ions Using a Coumarin-Derived Fluorescent Probe, Sens. Actuators B, 207: 216-223 (2015).
[40] Rahimi N., Sabbaghi S., Sheikhi M.H., Hydrogen Storage in Carbon Nanotubes with Ni Nanoparticles by Electrochemical, Int. J. Nano Dimens., 2: 165-169 (2012).
[41] Gupta V.K., Mergu N., Kumawat L.K., Singh A.K., A Reversible Fluorescence “Off-On-Off” Sensor for Sequential Detection of Aluminum and Acetate/ Fluoride Ions, Talanta, 144: 80-89 (2015).
[42] Karimi-Maleh H., Tahernejad-Javazmi F., Atar N., Yola M.L., Gupta V.K., Ensafi A.A., A Novel DNA Biosensor Based on a Pencil Graphite Electrode Modified with Polypyrrole/Functionalized Multiwalled Carbon Nanotubes for Determination of 6-Mercaptopurine Anticancer Drug. Ind. Eng. Chem. Res., 54: 3634-3639 (2015).
[43] Foroughi M.M., Beitollahi H., Tajik S., Hamzavi M., Parvan, H., Hydroxylamine Electrochemical Sensor Based on a Modified Carbon Nanotube Paste Electrode: Application to Determination of Hydroxylamine in Water Samples, Int. J. Electrochem. Sci., 9: 2955 (2014).
[44] Jain A.K., Gupta V.K., Singh L.P., Neutral Carrier and Organic Resin Based Membranes as Sensors for Uranyl Ions, Anal. Proc. incl. Anal. Commun., 32: 263-265 (1995).
[46] Darroudi A., Eshghi H., Rezaeian S., Chamsaz M., Bakavoli M., Haghbeen K., Hosseiny A., A Novel Carbon Paste Electrode for Potentiometric Determination of Vanadyl Ion, Iran. J. Chem. Chem. Eng.(IJCCE), 34(4): 89-94 (2015).
[49] Naddaf E., Abedi M.R., Zabihi M.S., Imani A., Electrocatalytic Oxidation of Ethanol and Ethylene Glycol onto Poly (o-Anisidine)-Nickel Composite Electrode, Iran. J. Chem. Chem. Eng.(IJCCE), 36(1): 59-70 (2018).
[50] Zhang X.D., Liu X.J., Zhang L., Li D.L., Liu S.H., Novel Porous Ag2S/ZnS Composite Nanospheres: Fabrication and Enhanced Visible-Light Photocatalytic Activities, J. Alloys Compound., 655: 38-43 (2016).
[51] Mao C.J., Chen X.B., Niu H.L., Song J.M., Zhang S.Y., Cui R.J., A Novel Enzymatic Hydrogen Peroxide Biosensor Based on Ag/C Nanocables, Biosens. Bioelectron., 31: 544-547 (2012).
[53] Park J.Y., Yun H.J., Min B.K., Ahn K.S., Lee D.K., Kim J.H., Enhanced Charge Transfer Kinetics of Dye Sensitized Solar Cells Using a Nb2O5/ZnO Heterojunction Nanorod Photoanode, Sci. Adv. Mater., 8: 749-753 (2016).
[54] Khojier K., Sol-Gel Spin Coating Derived ZnO Thin Film to Sense the Acetic Acid Vapor, Int. J. Nano Dimens., 8: 164-170 (2017).
[56] Asaadi N., Parhizkar M., Mohammadi Aref S., Bidadi, H., The Role of Polypyrrole in Electrical Properties of ZnO-Polymer Composite Varistors, Iran. J. Chem. Chem. Eng.(IJCCE), 36(3): 65-72
(2017).
[57] Suresh S., Saravanan P., Jayamoorthy K., Kumar S.A., Karthikeyan S., Development of Silane Grafted ZnO Core Shell Nanoparticles Loaded Diglycidyl Epoxy Nanocomposites Film for Antimicrobial Applications, Mater. Sci. Eng. C, 64: 286-292 (2016).
[58] Al-Dahash G., Khilkala W.M., Abd Alwahid, S.N., Preparation and Characterization of ZnO Nanoparticles by Laser Ablation in NaOH Aqueous Solution, Iran. J. Chem. Chem. Eng.(IJCCE), 37(1): 11-16 (2018).
[59] Wei W., Lin L., Cai X., Li Y., Yu Z., Zhong J., Low-Temperature Synthesized Well-Crystallized ZnO Microspheres for Photocatalysis, Sci. Adv. Mater., 8: 811-816 (2016).
[60]  Gnanaprakasam; A.J., Murugaiyan V., Marimuthu Thirumarimurugan, M., Investigation of Photocatalytic Activity of Nd-Doped ZnO Nanoparticles Using Brilliant Green Dye: Synthesis and Characterization, Iran. J. Chem. Chem. Eng. (IJCCE), 37(2): 61-71 (2018).
[61] Chen Y., Li X., Li X., Wang J., Tang Z., UV Activated Hollow ZnO Microspheres for Selective Ethanol Sensors at Low Temperatures, Sens. Actuators B, 232: 158-164 (2016).
[62] Papp Z., Solar Light-Induced Decolorization of Safranin O Using Unmodified and Gold-Modified Semiconductor Oxides, Iran. J. Chem. Chem. Eng. (IJCCE), 37(2): 151-156 (2018).
[63] Dar G.N., Umar A., Zaidi S.A., Baskoutas S., Kim SH.., Abaker M., Al-Hajry A., Al-Sayari S.A., Fabrication of High-Sensitive Non-Enzymatic Glucose Biosensor Based on ZnO Nanorods, Sci. Adv. Mater., 3: 901-906 (2011).
[64] Bard A.J., Faulkner L.R., Electrochemical Methods Fundamentals and Applications, second ed, New York: Wiley, (2001).